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Should First-Price Auctions Be Transparent?†

By Dirk Bergemann and Johannes Hörner*

We investigate the role of market transparency in repeated first-price 
auctions. We consider a setting with independent private and per-
sistent values. We analyze three distinct disclosure regimes regarding 
the bid and award history. In the minimal disclosure regime, each 
bidder only learns privately whether he won or lost the auction. In 
equilibrium, the allocation is efficient, and the minimal disclosure 
regime does not give rise to pooling equilibria. In contrast, in disclo-
sure settings where either all or only the winner’s bids are public, an 
inefficient pooling equilibrium with low revenues exists. (JEL D44, 
D82, D83)

Information revelation policies vary widely across auction formats. In the US pro-
curement context, as a consequence of the “Freedom of Information Act,” the 

public sector is generally subject to strict transparency requirements that require 
full disclosure of the identity of the bidders and the terms of each bid. In auctions of 
mineral rights to US government-owned land, however, only the winner’s identity 
is revealed. In many markets, only the winner’s bid and identity are disclosed. This 
is the case, for instance, in the mussels sealed-bid auction documented by Kleijnen 
and Schaik (2007) and also happens in some European procurement auctions (for 
instance, in the London bus routes auctions, see Cantillon and Pesendorfer 2006). 
Auction houses like Christie's or Sotheby's often preserve the anonymity of the win-
ning bidder and sometimes of the transaction amount. Over the last two years, the 
online auction site eBay has progressively moved toward a less transparent auction 
format. Bidders’ identities are no longer disclosed, although it remains possible to 
determine. Another instance of an opaque mechanism is the sponsored search auc-
tion of Google in which the algorithm based on which the winner and the price are 
determined is publicly unknown. Similarly to eBay the disclisure policies of Google 
have changed over the years to provide less information about past bids and past 
assignments.

Undoubtedly, the choice of such feedback policies reflects a variety of 
considerations, such as security, privacy, risk of corruption, or risk of collusion. 
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This paper focuses on the impact of these policies on bidders’ strategies, efficiency, 
and revenue. We consider infinitely repeated first-price auctions, with persistent, 
independent private values, and multiunit demand. We shall consider three 
information policies. With unobservable bids, bidders are only privately informed 
at the end of each round whether they have won the auction or not. With observable 
bids, all bids are disclosed at the end of each round. Finally, with winner-only 
observable bids, only the winner’s bid (and, although it plays no role, his identity) 
is publicly disclosed at the end of each round. In terms of the disclosure policies, 
we therefore focus on the provision of past bidding information for future auction 
events. This should be viewed as distinct from the provision of bidding information 
within a single auction, a topic of central interest for the comparison of the English 
or Dutch auctions to standard sealed-bid auctions; see Milgrom and Weber (1982). 
Thus, our concern for transparency is narrowly focused on the amount of feedback 
given about past auction events. But importantly, the rules of the bidding game, 
namely the first-price auction, are commonly known among the bidders, and thus, 
we are not concerned with transparency with respect to the rules of the game.

As we investigate a bidding game with an infinite horizon, as in many infinitely 
repeated games, collusive equilibria exist if bidders are sufficiently patient, even 
under the most restrictive feedback policy.1 Bid rotation, for instance, is a possibil-
ity. To evaluate the intrinsic performance of each policy absent any tacit but explicit 
collusion, we focus on Markov equilibria, in which strategies only depend on bid-
ders’ beliefs.

Providing more information to the bidders about the competing bids has conflicting 
effects. If more information about bids is disclosed, bidders have an incentive to 
submit low bids to mimic bidders with low valuations and induce high-valuation 
bidders to lower their bid so as to win more easily in later periods. However, if less 
information is provided, a winning bidder has an incentive to lower his bid to learn 
more about his opponents’ bids. If these bids were observable, such a discovery 
process would be futile, but when the bids of the losers’ remain undisclosed, it 
becomes valuable: to determine how low he can bid and still win, a past winner has 
an incentive to depress his bids. This learning effect suggests that less information 
is bad for revenue. While both effects are present in our model, we shall see that the 
first one dominates the second as the discount factor tends to one.

Of the three policies, the policy of unobservable bids is the most challenging to 
analyze, but it is also probably the most interesting one. Because bidding histories 
are private, higher-order beliefs arise naturally. A past winner’s belief about his 
opponents’ value naturally depends on the bid with which he has won (winning with 
a very high bid, for instance, is not very informative). But losers have not observed 
the winning bid, and so, based on their losing bid, they must form beliefs not only 
about the winner’s private value, but also about the winner’s beliefs about the other 
bidders’ values. In turn, because the losing bids are not observed, the winner must 
therefore form beliefs about the losers’ beliefs about his belief, etc. Therefore, the 
relevant state space is the rather formidable universal belief space introduced by 

1 At least as long as feasible allocations exist that guarantee each player his minmax payoff; see Section III. 
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Mertens and Zamir (1985). To have any hope at making some progress, we restrict 
attention throughout to binary valuations. Even then, establishing equilibrium 
existence, let alone uniqueness, is rather difficult.

Fortunately, it is possible to explicitly construct a Markov equilibrium. In this 
equilibrium, high-valuation bidders always bid strictly more than low-valuation 
bidders, so that the allocation is efficient. The high-valuation bidder who wins in 
the initial period cautiously decreases his bids over time, trading off the opportunity 
of winning with a slightly lower bid with the risk of losing and, more important, of 
generating mutual knowledge that he is not the only high-valuation bidder, which 
leads to higher future bids. As we show, a high-valuation bidder who loses in the 
initial period does not need to increase his later bids. In equilibrium, such a bidder 
can expect the winner to come down with his bids over time. In fact, it turns out that 
submitting bids that are constant over time is optimal for such a bidder. We provide 
closed-form expressions for the equilibrium strategies, which allows us to study 
expected revenue and perform comparative statics. In particular, we show that, as 
the discount factor goes to one, or equivalently, if auctions are repeated frequently 
enough, this revenue approaches the revenue of the optimal auction (without reserve 
price).

In contrast, when bidders have more feedback, a low-revenue pooling equilibrium 
might exist, which is impossible under unobservable bids. With winner-only 
observable bids, this pooling equilibrium is not unique. Indeed, there always exists 
a separating equilibrium whose revenue also tends to the maximal revenue as the 
discount factor goes to one. In contrast, with observable bids, the existence of a 
pooling equilibrium rules out the possibility of a separating equilibrium.

In the comparison of the minimal, the maximal, and the intermediate disclosure 
policy, we establish in Proposition 1 that the policy of minimal information disclosure 
renders a pooling equilibrium impossible. In contrast, under the more transparent 
information policies, a low-revenue pooling equilibrium always existed as long 
as the number of bidders and the discount factor were not too low, as established 
in Propositions 3 and 5. In fact, under the maximal disclosure policy, we estab-
lished that with a sufficiently large number of competitors an efficient, separating 
equilibrium ceased to exist; see Proposition 2. In contrast, under minimal disclosure, 
we proved the existence of an efficient separating equilibrium by construction, even 
though the bidders cease to share common beliefs after the initial bidding period. 
The combination of these results then lends support to minimal information disclo-
sure, both from an efficiency and from a revenue maximizing point of view.

We interpret these findings as consistent with the common wisdom that more 
transparency is likely to hurt revenue. For instance, OECD guidelines for public 
procurement state that “disclosing information such as the identity of the bidders 
and the terms and conditions of each bid allow competitors to detect deviations 
from a collusive agreement, punish those firms and better coordinate future tenders” 
(see OECD 2008). Note, however, that, as mentioned, our findings do not rely on 
explicit collusion. The observable bids format is inherently more collusive than the 
unobservable bids format. Our analysis thus supports empirical findings, such as 
those of Albæk, MØllgard, and Overgaard (1997), and experimental findings, such 
as those of Cason, Kannan, and Siebert (2009), showing how finer public feedback 
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may lead to lower revenues (and in experiments, pooling behavior). But our analysis 
also indicates that such findings must be interpreted with care, as the lower revenues 
need not be evidence of explicit collusion, but rather, of necessary adjustments in 
light of a new environment. In the words of an executive of an auction platform, 
“suppliers are finding that, in a transparent environment where competitors can see 
each others’ bids, the price for goods is being driven down” (Wilson 2000). A sec-
ond caveat is that it is not necessary to suppress all information to obtain efficiency. 
With winner-only observable bids, an efficient, high-revenue equilibrium exists as 
well. Simply, this equilibrium is not unique, and given this multiplicity, it should 
then come as no surprise that the impact of feedback might be limited in some set-
tings, as, for instance, in Cramton and Schwartz (2001).

The choice of information protocol is clearly affected by other considerations 
as well. Collusion and corruption do not only involve buyers, but also auctioneers. 
It is intuitively clear that too much opaqueness facilitates corruption of the auc-
tioneer by individual bidders. More generally, the auctioneer must be trusted to 
follow the auction rules that he adopts. Yet, it is not hard to see how, even in first-
price auctions, an auctioneer could take advantage from naive bidders by allocat-
ing the unit to the low bidder in a given period in order to make the high bidder 
more aggressive in his future bids. It is less clear whether such manipulation can 
be profitable if bidders understand the auctioneer’s incentives.

Related Literature.—There are a number of recent contributions in auction 
theory that consider similar information environments. Landsberger et al. (2001) 
analyze the first-price auction in a static environment when only the ranking of the 
valuations is common knowledge. Their analysis is motivated by the information 
revealed through the interaction in repeated bidding environments. The main focus 
of their paper is the analysis of the specific asymmetric auction environment that 
results when two bidders, possibly starting with the same common prior over the 
valuation, receive additional information about their ranking with respect to their 
competitor. In a model with a continuum of valuations, they establish the existence 
and uniqueness of a pure strategy Bayes-Nash equilibrium. They also show, by 
example, that the equilibrium bidding strategies can typically not be expressed as 
an analytic function, due to a singularity in the bidding function at the lower end of 
the valuations.

Février (2003) extends the analysis of Landsberger et al. (2001) from two ​​to ​n​ 
bidders. He then compares the revenue generated by the sale of two identical units of 
an object in the sequential auction over two periods to the revenue when the units are 
sold as a bundle in a single auction. Février (2003) establishes that the revenue in the 
static auction of the bundle yields a higher revenue than the sequential auction with 
or without the announcement of the winner in the first period. Yao (2007) analyzes 
the equilibrium in a two-period model when the winning bidder and the winning 
bid is revealed after the first period. In particular, he finds that the initial bids in the 
two-period model are uniformly lower than the bids in the static first-price auction. 
Tu (2007) compares the revenue properties of a number of auction formats and dis-
closure policies in a two-period setting. He restricts attention to uniformly distrib-
uted values. Notably for the first price auction, he finds that, announcing the winning 
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bid yields a higher revenue than announcing the winning and the losing bid. In turn, 
the revenue from the auction with observable bids yields a higher revenue than the 
auction with unobservable bids. Thomas (2010) also compares different disclosure 
policies within a two-period model with two possible types for each bidder. His rev-
enue ranking coincides with the results of Tu (2007) for comparable informational 
assumptions. By imposing a reserve price at the low valuation, he restricts attention 
to separating equilibria in which low-valuation bidders never submit bids at all. This 
restriction completely removes the possibility of pooling equilibria in the analysis.

The aforementioned papers obtain results for the special case of a finite horizon 
with two periods. With two periods, pooling equilibria cannot arise. By contrast, 
pooling equilibria arise in the observable or the winner-only observable bid environ-
ment with infinite horizon. Hence, our conclusions regarding the benefits of disclos-
ing bid information therefore differ markedly from the previous literature, and lead 
us to suggest that disclosing past bids may be detrimental to the revenue to the seller. 

The relationship to the finite horizon is different with unobservable bids. We derive 
the Markov equilibrium in the infinite horizon model. By comparison, we then find 
that the Markov equilibrium for a finite horizon (with or without discounting) is in 
fact simply the truncated version of the infinite horizon model. Thus all the results 
for the unobservable bid environment, in particular Proposition 1 on the impossibil-
ity of pooling and Theorem 1 on the characterization of the separating equilibrium 
remain valid in the exact form for the finite horizon. However, the restriction to a 
finite horizon does impact the bidding behavior with observable bids. Importantly, 
a (complete) pooling equilibrium as in Theorem 3 now fails to exist for any finite 
horizon. Thus any finite horizon model would neglect the existence of pooling equi-
libria and thus would fail to recognize the revenue gain from unobservable bids.

The role of the disclosure policy and the information flow is central also in the 
recent work of Kaya and Liu (2015), who consider a model of sequential bargaining 
with a sequence of short-lived sellers. Similarly to our auction environment, they 
come to the conclusion that unobservability lowers the price that the competing 
sellers obtain and increases the speed of trading.2

The remainder of the paper is organized as follows. Section I presents the 
model and the rules of information disclosure. Section II considers the equilibrium 
bidding strategies with unobservable bids. It explicitly constructs an equilibrium in 
separating strategies and establishes comparative statics. Section III considers the 
environment with observable bids. Section IV analyzes the equilibrium when only 
the bid of the winner is observable. Section V concludes, and the Appendix collects 
the remaining proofs.

2 The impact of the disclosed (or publicly observable) information is also central in the recent work on optimal 
dynamic auctions where the private information of each bidder is given by a multidimensional type, say his valuation 
and the deadline by which the bidder needs to acquire the object. For example, in Dizdar, Gershkov, and Moldovanu 
(2011) and in Pai and Vohra (2013), the partial disclosure of information can increase the revenue of the auctioneer 
as it reduces the dimensionality of the incentive constraints. The disclosure in these papers directly pertains to 
the private information rather than the strategy (bid) of the agents and hence results in distinct implications of 
information disclosure. 
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I.  The Model

A. Three Variations on a Theme

There are ​n + 1 ≥ 2​ bidders, or players, competing in an infinite sequence of 
auctions. In every period ​t = 0, 1, … ​ , a single unit is sold via a first-price sealed-bid 
auction.3 There is no reserve price and ties are broken randomly. Bidders have 
quasi-linear preferences that are additively separable across periods. A player’s 
valuation ​​u​​ i​​ , or type, is constant across time and private information. Valuations 
are binary: bidder ​i​’s type is either high and equal to ​​u ̅ ​​ or low, equal to ​​u 

̅
 ​​. Types are 

drawn independently across bidders, and the probability that bidder ​i​’s valuation is ​​
u ̅ ​​ is ​q ∈ (0, 1)​. The same ​n + 1​ bidders participate in all these auctions, and both the 
number of bidders and the type distribution are common knowledge among bidders. 
These assumptions, discussed in the conclusion, are quite restrictive (in particular, 
the binary valuations of the bidders), but it will become clear that relaxing them 
appears difficult in the case in which bids are not observable.4

Thus, the reward ​​r​ t​ 
i​​ in period ​t​ of player ​i​ with valuation ​​u​​ i​​ is equal to ​​u​​ i​ − ​b​ t​ 

i​​  
if he bids ​​b​ t​ 

i​​ and he wins the object, or to zero ​​if he does not win. Bidders discount 
future periods with a common discount factor ​δ  <  1​. The realized payoff of a 
bidder is the average discounted sum of his rewards:

	​​  ∑ 
t=0

​ 
∞

 ​​ (1 − δ) ​δ​​ t​ ​r​ t​ 
i​ .​

Our purpose is to compare different information policies available to the 
auctioneer. In all cases, every individual bidder is privately informed at the end of 
any given period, whether he has won the unit in that period or not. We compare 
three scenarios:

  • � In the unobservable case, bids are not disclosed. The identity of the winner is 
not disclosed either. Of course, if ​n + 1  =  2​ , a bidder can infer who won from 
his own information (whether he won or lost), but this is no longer the case with 
more bidders.

  • � In the observable case, the auctioneer discloses who bid how much. This is the 
case of perfect monitoring, and bidders accordingly update their beliefs about 
the valuations of others.

  • � In the winner-only observable case, the bid of the winning bidder is announced. 
Although this turns out to be irrelevant for our analysis, we also assume that the 
winner’s identity is disclosed. Nothing else is disclosed.

3 We will see later that many of the mathematical expressions for bidding functions, distributions, etc. depend 
on (the other) n bidders. It is hence convenient and more compact to start with n + 1 bidders.

4 With more than two values, the Markov assumption also loses its bite in the arguably simpler case of 
observable bids, i.e., the equilibrium outcome is no longer unique—not much of a surprise given the leeway in 
specifying out-of-equilibrium beliefs. See Hörner and Jamison (2008) for a discussion of such examples in a related 
environment. 
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In a repeated game such as ours, even with incomplete information, there is a 
myriad of equilibria. For instance, there are collusive equilibria that involve bid 
rotation and a winning bid of zero in every period, which are easy to support if ​​u 

̅
 ​ > 0​ , 

independently of the structure of the uncertainty. Because we are not interested in 
collusion per se, we focus on Markov equilibria, in which players’ strategies only 
depend on payoff-relevant information.

What information is payoff-relevant in our environment is tricky. In the observable 
case, players’ beliefs (about others’ values) are public after every history, and 
we take these beliefs as the state variable. A similar definition is possible in the 
winner-only observable case. This, however, is difficult in the unobservable case. 
For instance, a winner infers from his bid how high his opponents’ bids could be, 
and this affects his beliefs about their valuations. His beliefs, however, are no longer 
common knowledge because his bid is not. Because a loser can only deduce a lower 
bound on the winner’s bid from his own bid, the loser has beliefs about the winner’s 
beliefs, and they are certainly payoff-relevant from his viewpoint. We are therefore 
led to consider the universal type space (see Mertens and Zamir 1985) as the natural 
state space for our definition of Markov strategies.

But first, let us define precisely the bidders’ information and strategies in each 
scenario.

B. Histories and Strategies

Even under complete information, it is often convenient to introduce infinitesimal 
bids in order to avoid complications linked to real numbers: if bidder 1 is known to 
be of value ​​u 

̅
 ​​  and bidder 2 is known to be of value ​​u ̅ ​​ , it is natural, in the one-shot 

game, to focus on the equilibrium in which bidder 1 bids ​​u 
̅
 ​​ and bidder 2 bids 

“as little as possible” above ​​u 
̅
 ​​. Of course, there is no such bid in the field of real 

numbers. To avoid this difficulty, one can resort to richer strategies, as in Blume 
(2003), to endogenous tie-breaking rules, as in Jackson et al. (2002), or to arbitrarily 
fine but discrete bid grids, as in Chwe (1989). As a convention, we shall follow 
here Engelbrecht-Wiggans and Weber (1983) and Hörner and Jamison (2008) and 
assume that there is such a bid ​​​u 

̅
 ​​+​​​ , which costs just as much as ​​u 

̅
 ​​ , but that is strictly 

larger, while being strictly smaller than any real number ​b  > ​ u 
̅
 ​​.

A private history of player ​i​ up to period ​t​ is a sequence ​(​b​ 0​ 
i ​, ​k​ 0​ 

i ​, … , ​b​ t−1​ 
i  ​, ​k​ t−1​ 

i  ​)​ , 
consisting of the bids ​​b​ t′​ 

i ​ ∈ ​ℝ​+​​ ∪ {​​u 
̅
 ​​+​​}​ that he made in period ​​t ′ ​​ , and of his personal 

outcome in that period: ​​k​ ​t ′ ​​ 
i ​ = 0​ if bidder ​i​ did not win the object in period ​​t ′ ​​ , and ​​

k​ ​t ′ ​​ 
i ​ = 1​ if he won the object. A private history of player ​i​ up to period ​t​ is denoted ​​

h​ t​ 
i​ ∈ ​H​ t​ 

i​ ≔ ​(( ​ℝ​+​​ ∪ { ​​u 
̅
 ​​+​​ } ) × {0, 1})​​ t​​.

In the unobservable case, this is the only information available to player ​i​ , and a 
(behavior) strategy ​​σ​​ i​​ is then simply a countable sequence of transition probabilities ​​
σ​ t​ 

i​ :  { ​u 
̅
 ​, ​ 
_

 u ​} × ​H​ t​ 
i​  →  Δ( ​ℝ​+​​ ∪ { ​​u 

̅
 ​​+​​ })​ , mapping bidder ​i​’s valuation and private his-

tory into a distribution over bids.
In the observable case, bidder ​i​ knows the entire sequence of bids in 

each period up to ​t​. The public history up to period ​t​ is thus a sequence 
​(( ​b​ 0​ 

1​ , … , ​b​ 0​ 
n​ ), ​j​0​​, … , ( ​b​ t​ 

1​, …  , ​b​ t​ 
n​ ), ​j​t​​ ),  ​ with ​(​b​ ​t ′ ​​ 

1​, … , ​b​ ​t ′ ​​ 
n​)  ∈ ​ ( ​ℝ​+​​ ∪ { ​​u 

̅
 ​​+​​ })​​ n​​ , and 
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​​j​​t ′ ​​​ ∈ {1, … , n}​ , where ​​b  ​ ​t ′ ​​ 
​j​​t ′ ​​​​ ≔ ​ max​i​​ ​b​ ​t ′ ​​ 

i ​​. Of course, the identity ​​j​​t ′ ​​​​ of the winner in 
period ​​t ′ ​​ can be inferred from the ordered bid tuple (unless there is a tie). The public 
history up to ​t​ is denoted ​​h​t​​ ∈ ​H​t​​ ≔ (​(​ℝ​+​​ ∪ { ​​u 

̅
 ​​+​​}​)​​ n​ × {1, … , n})​​ t​​. (Set ​​H​ 0​ 

i ​ ≔ {∅ }, ​
H​0​​ ≔ {∅ }​.)

In the winner-only observable case, a public history up to ​t​ is a sequence 
​(​b​ 0​ 

w​, ​j​0​​, … , ​b​ t−1​ 
w  ​, ​j​t−1​​)​ of winning bids ​​b​ ​t ′ ​​ 

w​​ in period ​​t ′ ​​ , and of the identity of the win-
ning bidder in that period: ​​j​​t ′ ​​​ ∈ {1, … , n}​ refers to the winning bidder in that period. 
The set of public histories ​​H​t​​​ in this case is equal to ​​(( ​ℝ​+​​ ∪ { ​​u 

̅
 ​​+​​}) × {1, … , n})​​ t​​. 

For consistency, we set ​​H​t​​ ≔ { ∅ }​ , all ​t​ , in the unobservable case, so that we may 
talk about the three scenarios in a unified way.

A behavior strategy ​​σ​​ i​​ for player ​i​ in the observable case or the winner-only 
observable case is again a countable sequence of transition probabilities 
​​σ​ t​ 

i​ :  { ​u 
̅
 ​, ​ 
_

 u ​} × ​H​ t​ 
i​ × ​H​t​​  →  Δ( ​ℝ​+​​ ∪ { ​​u 

̅
 ​​+​​ })​ , mapping bidder ​i​’s valuation, along with 

the private and public history up to period ​t​ , into a distribution over bids.

C. Solution Concept

A strategy profile ​σ  = ​ (​σ​​ i​ )​i​​​ defines a probability distribution ​​P​σ​​​ over infinite 
histories in the obvious way, and we can therefore define player ​i​’s payoff under the 
strategy profile ​σ​ as the expectation of his realized payoff relative to this distribution:

	​​ V​​ i​ (σ)  = ​ E​σ​​​[​ ∑ 
t=0

​ 
∞

 ​​ (1 − δ) ​δ​​ t​ ​r​ t​ 
i​]​.​

Fix some strategy profile ​σ​. Given the common prior on bidders’ valuations, and 
given any pair of private and public histories ​(​h​ t​ 

i​, ​h​t​​)​ that are in the support of the 
distribution ​​P​σ​​​ , Bayes’ rule determines bidder ​i​’s beliefs about the other bidders’ 
valuations and their private histories ​​h​ t​ 

j​​ , ​j  ≠  i​. This in turn defines a conditional 
distribution ​​P​σ  | (​h​ t​ 

i​, ​h​t​​)​​​ over the sequence of future rewards, and we can define the 
continuation payoff of player ​i​ after ​(​h​ t​ 

i​, ​h​t​​ )​ as

	​​ V​​ i​ (σ | (​h​ t​ 
i​, ​h​t​​ ))  = ​ E​σ | (​h​ t​ 

i​, ​h​t​​)​​​[ ​ ∑ 
​t ′ ​=t

​ 
∞

 ​​ (1 − δ) ​δ​​ ​t ′ ​−t​ ​r​ ​t ′ ​​ 
i ​]​.​

We may then define a perfect Bayesian equilibrium (or PBE, for short) as a strategy 
profile ​σ​ in which players’ strategies ​​σ​​ i​​ are sequentially rational after every pair 
​(​h​ t​ 

i​, ​h​​ t​ )​ given their beliefs, and these beliefs are consistent with Bayes’ rule if this 
pair is in the support of ​​P​σ​​​.

As mentioned, we are not interested in characterizing all PBE. It is natural to 
focus on Markov equilibria, in which players’ strategies are measurable with respect 
to their beliefs. However, we have seen that, at least in the unobservable case, atten-
tion cannot be restricted to first-order beliefs; even if player ​i​ conditions on ​j​ being 
of the high type, he cannot infer player ​j​’s first-order beliefs from his own private 
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history ​​h​ t​ 
i​​  because player ​j​’s high type might randomize over bids and what deter-

mines ​j​’s first-order beliefs is the realization of these bids, i.e., player ​j​’s private 
history. We are thus led to adopt as state space for player ​i​ the universal belief space ​​
Θ​​ i​​ (see Mertens and Zamir 1985), which is compact and metric. Given the strategy 
profile ​σ​ , a pair of histories ​(​h​ t​ 

i​, ​h​t​​ )​ in the support of ​​P​σ​​​ defines a belief ​​θ​​ i​ ∈ ​Θ​​ i​​ via 
Bayes’ rule. Player ​i​’s strategy is Markov if it is measurable with respect to these 
beliefs. It is natural to further impose that player ​i​’s strategy is also measurable with 
respect to his belief ​​θ​​ i​​ off-path as well, even if these beliefs are no longer deter-
mined by Bayes’ rule. A Markov strategy is then summarized by a measurable map ​​
σ​​ i​ : ​Θ​​ i​  →  Δ(​ℝ​+​​ ∪ {​​ u ¯ ​​+​​})​ , and a Markov equilibrium (hereafter, MSE) is a PBE in 
Markov strategies. In the observable case, these hierarchies of beliefs are trivial, and 
they turn out to be simple in the case of winner-only observable bids as well. They 
are, however, more complicated in the unobservable case.

Because of the arbitrariness of the specification of beliefs off-path, these 
beliefs can be used to threaten players, so that the Markov restriction does not 
reduce the set of equilibria as much as one would like to. Consider for instance 
the observable case with two bidders. Fix some history after which it is com-
monly believed that the two bidders have low valuations. It would be natural, 
then, to conjecture that in a Markov equilibrium, after such a history, both bidders 
set their bid equal to ​​ u ¯ ​​ in every period. But any lower common bid would do as 
well, as long as the equilibrium specifies that any higher bid will lead to a belief 
revision. For instance, if bidder ​i​ observes ​j​ bidding more, we could specify that ​
i​ now believes that ​j​ has a high valuation after all, and then bids ​​u 

̅
 ​​ thereafter. This 

deters any deviation. To prune such artificial equilibria, we impose the following 
refinement.

REFINEMENT A:

	 (i)	 After any history ​(​(​h​ t​ 
i​ )​i​​, ​h​t​​)​ , low-type bidders bid ​​ u ¯ ​​ in every period.

	 (ii)	 After any history ​(​(​h​ t​ 
i​ )​i​​, ​h​t​​)​ such that it is common knowledge among at least 

two high-type bidders that they are both high-type bidders, those two high-
type bidders bid ​​u ̅ ​​ thereafter.

The first restriction is a combination of two assumptions. First, a low-type bidder 
does not use a weakly dominated strategy, such as bidding strictly more than ​​u 

̅
 ​​.  

Second, all bids are at least as high as the lowest commonly known value (while 
(i) of Refinement A does not impose that the high-type bidder bids at least ​​u 

̅
 ​​ , it is 

easy to see that it will imply it). Note that the second part of the refinement does 
not require that the two high-type bidders know their respective identities. Rather, it 
suffices that it be common knowledge among them that they exist. Still, Refinement 
A will not ensure uniqueness, but it will help narrow down the set of candidate 
equilibria considerably.

Note that we have now pinned down, by assumption, the equilibrium behavior of 
the low-type bidder. Therefore, the difficulty lies in identifying the behavior of the 
high-type bidder.
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D. The Static Auction

We conclude this section with a brief review of the static first-price auction, with ​
n + 1​ bidders, ​i = 1, … , n + 1​ , two possible valuations each, ​​u​​ i​  ∈ ​ {​u 

̅
 ​, ​ 
_

 u ​}​​ , and 
identical and independent priors given by ​1 − q​ and ​q​ , respectively. With discrete, 
here binary, valuations, the unique equilibrium of the first-price auction involves 
randomization by the high-valuation bidder (see Maskin and Riley 2003). His bid 
has to balance the probability of a winning bid against the price paid conditional 
on winning. The unconditional distribution of bids from each of his competitors 
is denoted by ​F​(b)​​. Every bid in the support of the random bidding strategy must 
maximize the expected payoff

	​ F ​​(b)​​​ n​​(​ 
_

 u ​ − b)​ .​

Indifference of the high-valuation bidder requires that the right-hand side be 
independent of ​b​ , i.e.,

(1)	​ F​(b)​  = ​ (1 − q)​ ​​(​ ​ 
_

 u ​ − ​u 
̅
 ​ ______ 

​ 
_

 u ​ − b
 ​)​​​ 

1/n

​, ​

where the support of the distribution is given by ​​[​u 
̅
 ​, ​u ̅ ​ − ​(1 − q)​​ n​ (​u ̅ ​ − ​u 

̅
 ​)]​​. The 

distribution displays a mass point at the lower extremity of the support, where  
​F​(​u 

̅
 ​)​  = ​ (1 − q)​​ n​​ reflects the fact that the low-valuation bidder makes a deterministic 

bid equal to his valuation. In contrast, the high-valuation bidder continuously 
randomizes on ​(​u 

̅
 ​, ​u ̅ ​ − ​(1 − q)​​ n​ (​u ̅ ​ − ​u 

̅
 ​ ) ]​. The low-valuation bidder receives zero 

net payoff, while the high-valuation bidder receives a positive payoff, given by  
​​​(1 − q)​​​ n​​(​ 

_
 u ​ − ​u 

̅
 ​)​​. In the first-price auction, each type’s payoff is equal to his payoff 

from the second-price auction. Yet, with discrete types, the revenue equivalence 
theorem fails, and revenue might differ across mechanisms that are efficient and  
yield no surplus to the low-type bidder. We shall encounter such mechanisms. 
However, the allocation from the first-price auction maximizes revenue among  
efficient mechanisms.

II.  Unobservable Bids

We begin our analysis with the case of unobservable bids.

A. On the Impossibility of Pooling

An equilibrium is pooling if, on the equilibrium path, bidders of different valuations 
use the same bidding strategy, so that, equivalently, beliefs do not change. Note that, 
if the strategies of the bidders act to separate types, then a high-valuation bidder 
will (eventually) win against a low-valuation bidder. In the process of separation, 
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the high-valuation bidder also reveals his true valuation and consequently might be 
forced into an eventual competition with another high-valuation competitor that will 
leave both of them with no surplus. From this point of view, a pooling equilibrium 
might seem desirable for the bidders, especially when the probability that a bidder 
has a high valuation is high and when bidders are patient. Indeed, such equilibria 
will arise under other information structures, as we shall see. Pooling implies that 
the surplus must be shared, in particular with low-valuation bidders. The benefit is 
that the price remains low.

Consider then such a candidate pooling equilibrium. As the bids are not observable, 
any loss can be attributed to pure chance (given the random tie-breaking) and does 
not lead to a revision of the prior. This opens the door for a high-valuation bidder 
to bid slightly more than the pooling bid and to win the current auction for sure. As 
beliefs of the agents are unchanged, the current benefit comes without a future cost, 
and this represents a profitable deviation.

PROPOSITION 1 (Impossibility of Pooling): For all ​q, n, δ​ , a pooling Markov 
equilibrium does not exist with unobservable bids.

Refinement A is not necessary for Proposition 1. To see this, note first that a 
pooling equilibrium must involve pure strategies because it is not possible, given 
single-crossing, that low- and high-type bidders are simultaneously indifferent over 
two bids (i.e., over two distinct probabilities of winning: the probability of winning 
in the continuation equilibrium must be independent of this bid, by the Markov 
assumption, and by the fact that the observed bid does not affect beliefs in a pooling 
equilibrium). This pooling bid must (at least in some period) be no larger than ​​u 

̅
 ​​ , 

else the low-type bidder would make negative profits. Pick any such bid, and apply 
the argument above.

Having established the impossibility of pooling in a Markov equilibrium, we now 
proceed to construct a specific separating equilibrium.

B. The Separating Equilibrium: Preview

In a separating equilibrium, low- and high-valuation bidders’ strategies have disjoint 
supports, which allows some learning to take place. Of course, with unobservable 
bids, this learning might be incomplete. For instance, a high-valuation bidder that wins 
in the initial period only infers that his opponents have bid less than he did, but that 
does not allow him to ascertain his opponents’ valuation for sure. He simply updates 
his beliefs given his winning bid and so do the losing bidders, given their losing bids. 
Further, the losing bidders revise their beliefs about the winner’s beliefs, but because 
they do not know the winning bid, this leads to a subtle updating process.

We shall circumvent these difficulties as follows. Recall that low-valuation bidders 
bid ​​u 

̅
 ​​ throughout, so the focus is on the high-valuation bidders. The  separating 

equilibrium we shall construct has the following properties:

  • � In the initial period, high-valuation bidders continuously randomize over the 
support ​[ ​​u 

̅
 ​​+​​, ​​ 

_
 b ​​0​​ ]​ , for some ​​​ b ̅ ​​0​​  > ​​ u 

̅
 ​​+​​​. This partitions the set of bidders according 
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to their status after the initial period as “winner” and “losers.” We shall refer to 
a bidder as the winner entering period ​t​ if he won in all periods up to ​t​  and as a 
loser if he lost in all those periods.

  • � In later periods, as long as the (initial) winner has never lost, as a function of 
their initial bid, (high-valuation) bidders submit bids that decrease over time.5 
Both the (high-valuation) winner and the loser always bid strictly more than ​​u 

̅
 ​​ , 

but depending on his initial bid, the winner might bid ​​​ u ¯ ​​+​​​. More precisely, for 
every period, there exists a range of bids in ​[ ​​u 

̅
 ​​+​​ , ​​ 

_
 b ​​0​​ ]​ , that includes ​​​u 

̅
 ​​+​​​ , such that 

if the winner has won in the initial period with a bid in this range, then his bid 
in period ​t​ and beyond is ​​​u 

̅
 ​​+​​​. The support of the bid distribution of the winner 

and (high-valuation) losers is common, i.e., the highest bid that a loser could 
conceivably make in a given period, i.e., the bid a loser would make if he lost 
in the initial period with a bid of ​​​ 

_
 b ​​0​​​ , coincides with the bid the winner would 

make if he had initially won with ​​​ 
_

 b ​​0​​​.

We note that such an equilibrium would have the desirable feature that, as soon as 
a high-valuation bidder who always won so far loses in some period ​t > 0​ , it would 
become common knowledge among two bidders that there are two high-valuation 
bidders.6 To see this, note that the high-valuation loser who then wins knows that 
there exists another high-valuation bidder because he lost in the initial period with 
a bid strictly above ​​u 

̅
 ​​. But as the winner eventually loses with a bid strictly above ​​u 

̅
 ​​ , 

this winner learns that there is another high-valuation bidder and thus that there is 
another bidder who knows that there are two high-valuation bidders. Because they 
both know that the winner has lost in period ​t​ , this establishes common knowledge 
(among them) that there are two high-valuation bidders. By Refinement A, bids then 
jump up to ​​u ̅ ​​ , which ends the game for all practical purposes. We may then focus on 
the histories in which the “winner” of the initial auction has never lost afterwards.

In such an equilibrium, the process of belief updating is simple. Assume there 
are two bidders. Consider the high-valuation winner’s inference problem. Given 
that the loser is using a monotone strategy, the winner’s belief can be summarized 
by a cutoff bid. Namely, the winner can derive an upper bound on the bid that the 
loser might submit in the current period, which is the highest bid consistent with the 
loser’s equilibrium strategy, given that all his bids were below the winner’s bids until 
then. While the winner knows that the loser will not bid above this cutoff, his private 
information gives him no further information regarding the relative likelihood 
of lower bids. Therefore, a belief revision for the winner amounts to truncating 
(from above) the corresponding distribution. Updating proceeds similarly for the 
high-valuation loser. His private history provides him with a lower bound on the 
bids that the high-valuation winner might submit. Therefore, a belief revision for the 
loser amounts to truncating (from below) the corresponding distribution.

5 We insist that, although for convenience we describe later bids as functions of earlier bids, they are truly 
functions of the bidders’ beliefs, which on the equilibrium path happen to be pinned down by their initial bid. 

6 Note, however, that with more than two bidders all but two bidders will never learn for sure whether the initial 
winner has already lost, in which case there is no longer any scope for them to win. 
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The next subsection shows how to explicitly solve for the equilibrium strategies. 
The reader mostly interested in the qualitative findings might elect to skip it without 
loss of continuity.

C. Deriving the Equilibrium Strategies

Fix a separating Markov equilibrium. Let ​​F​t​​​ denote the cumulative and uncondi-
tional distribution function (c.d.f.) summarizing the equilibrium strategy in period ​
t​ of a player who always lost up to period ​t − 1​ , and ​​G​t​​​ the unconditional c.d.f. 
summarizing the equilibrium strategy in period ​t​ of a player who always won up to 
period ​t − 1​. That is, ​​F​t​​​ captures the winner’s belief about the bid distribution of any 
given loser in period ​t​ , if he had submitted in all previous periods bids with which 
he was sure to win, and were thus uninformative. Similarly, ​​G​t​​​ describes the belief 
about the winner’s distribution of a loser who would have bid less than ​​u 

̅
 ​​ throughout.

The distinction between winner and loser is immaterial initially, and thus, 
​​G​0​​  = ​ F​0​​​. Given the properties of the separating equilibrium we seek, it must be 
that ​​F​t​​​(​u 

̅
 ​)​  =  1 − q​ (recall that ​1 − q​ is the prior probability of a low valuation). 

By contrast, the high-valuation bidder who won until ​t​ might bid ​​​u 
̅
 ​​+​​​ with discrete 

probability, i.e., ​​G​t​​​(​u 
̅
 ​)​  =  1 − q​ but ​​G​t​​​(​​u 

̅
 ​​+​​)​  ≥  1 − q​.7

In general, a player’s beliefs are pinned down by his entire private history. It turns 
out that the last bid (along with the bidder’s status as winner or loser) is a sufficient 
statistic for this belief, at least on the equilibrium path, on which we focus for now. 
Thus, we denote by ​​V​t​​ (b)​ the continuation value of the winner with a high valuation ​​
u ̅ ​​ , given that his last bid was ​b​. Similarly, we denote by ​​W​t​​ (b)​ the continuation value 
of a loser with a high valuation ​​u ̅ ​​ , given that his last bid was ​b​. We emphasize that 
this is just a convenient shorthand for the player’s beliefs.

The derivation below is performed for the case of two bidders. This makes the 
exposition somewhat easier. Results, however, are stated for ​n + 1​ bidders, with 
proofs in the Appendix.

The Loser’s Bidding Strategy.—We start by determining the equilibrium bid 
distribution ​​F​t​​​ of the loser for all periods ​t  ≥  1​. The bid distribution ​​F​t​​​ of the loser 
is determined by the indifference condition of the winner. His continuation value is 
given by the optimality equation

(2)	​​ V​t​​​(b)​  = ​ max​ 
β
​ ​​ {​ 

​F​t​​​(β)​
 _ 

​F​t−1​​​(b)​
 ​​[(1 − δ ) (​u ̅ ​ − β )  + δ ​V​t+1​​​(β)​]​}​,  t  ≥  1. ​

The winner receives the object in period ​t​ with a bid ​β > ​u 
̅
 ​​ if and only if the loser 

makes a bid below ​β​.8 The ratio ​​F​t​​ (β)/​F​t−1​​ (b)​ is the conditional belief of the winner 

7 To avoid clutter, we shall just omit the distinction between ​​G​t​​ (​u 
̅
 ​)​ and ​​G​t​​ (​​u 

̅
 ​​+​​ )​ , with the convention that 

​​G​t​​ (​u 
̅
 ​ )  − (1 − q)​ is the probability assigned to the bid ​​​ u ¯ ​​+​​​ , as the probability assigned to ​​u 

̅
 ​​ is ​1 − q​ throughout. 

8 Implicitly, here and in the winner’s problem, we restrict the domain of the choice variable ​β​ to the range of 
values that will preserve the feature that the last bid is a sufficient statistic for the entire past, and for which, the 
ratio ​​F​t​​ (β)/​F​t−1​​ (b)​ is less than one, i.e., such that ​β  ≤ ​ β​t​​ (b)​. We will then verify that the strategy profile obtained 
in this manner is an equilibrium. 
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and is obtained by truncation of his original, unconditional belief. The unconditional 
probability of a bid below ​β​ is given by ​​F​t​​​(β)​​. The winner received the object in 
the preceding period with a bid ​b​ , hence he can condition his bid ​β​ today on the 
information that the loser made a bid below ​b​ yesterday (this, as it turns out, is finer 
information than the one contained in his earlier bids). If, for instance, he makes the 
bid ​​β​t​​ (b)​ that the loser would submit after bidding ​b​ in period ​t − 1​ , he would win 
with probability ​​F​t​​ (​β​t​​ (b))/​F​t−1​​ (b) = 1​  because, given monotonicity, ​​F​t​​ (​β​t​​ (b)) = ​
F​t−1​​ (b)​ , by definition of ​​β​t​​ (b)​. The winner has no incentive to bid more than ​​β​t​​ (b)​ , 
since this bid suffices to win for sure.

In the case of a winning bid ​β​ , the winner receives the object today at the price ​β​ 
and maintains his status as winner for at least another period. By contrast, if he loses 
the auction today, then it is common knowledge among the bidders that they both 
have a high valuation. Hence, by Refinement A, all future bids will be equal to ​​u ̅ ​​ and 
exhaust all surplus from the bidders’ point of view.

We define ​​Y​t​​​(b)​​ to be the expected future utility from a bid ​b​ in the preceding 
period, so

(3)	​​ Y​t​​​(b)​ ≔ ​F​t−1​​​(b)​ ​V​t​​​(b)​.​

This allows to rewrite the value function of the winner as

(4)	​​ Y​t​​​(b)​/(1 − δ) = ​max​ 
β
​ ​​ {​F​t​​​(β)​​(​u ̅ ​ − β)​ + δ ​Y​t+1​​​(β)​/(1 − δ)}​,  t  ≥  1,​

so that the unconditional distribution ​​F​t−1​​​ of the preceding period ​t − 1​ no longer 
appears. Note that the right-hand side no longer depends on ​b​ , so that ​​Y​t​​​(b)​​ does not 
either. That is, ​​Y​t​​​(b)​​ is constant, and the last term on the right-hand side, ​​Y​t+1​​ (β)​ , 
must be as well. Thus, the first term of the right-hand side must be constant over the 
support of ​​F​t​​​ , and so

	​​ F​t​​​(b)​  = ​ 
​φ​t​​ _ 

​u ̅ ​ − b
 ​ ,  t  ≥  1,​

for some constant ​​φ​t​​​. Since the equilibrium we seek to identify satisfies 
​​F​t​​​(​u 

̅
 ​)​ = 1 − q​ for all ​t ≥ 1​ , the constant ​​φ​t​​​ is given by ​​φ​t​​ = φ ≔ ​(1 − q)​ ​(​u ̅ ​ − ​u 

̅
 ​)​​ , 

independently of ​t​ for ​t ≥ 1​. We record below the equilibrium strategy for the loser 
in case that there are ​n + 1​ bidders, as an immediate generalization of the formula 
above (see (37) in the Appendix).
LEMMA 1 (The Loser’s Bid Distribution): The loser’s bid distribution is given by, 
for all ​t  ≥  1​ ,

(5)	​​ F​t​​ (b)  =  F(b) ≔ (1 − q) ​​(​ ​u ̅ ​ − ​u 
̅
 ​ _____ 

​u ̅ ​ − b
 ​)​​​ 

1/n

​,​

on the support ​​[​u 
̅
 ​, ​u ̅ ​ − ​(1 − q)​​ n​ (​u ̅ ​ − ​u 

̅
 ​)]​​. Thus, the loser makes a constant bid from ​

t ≥ 1​ onward.
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Equation (4) provides a simple difference equation for the sequence ​​{ ​Y​t​​ }​t​​​ of 
unconditional payoffs, namely, ​​Y​t​​/(1 − δ) = φ + δ ​Y​t+1​​/(1 − δ),​ whose unique 
bounded solution is

(6)	​​ Y​t​​  =  φ  =  (1 − q) (​u ̅ ​ − ​u 
̅
 ​ ),​

which is independent of time and of the past bid ​b​. With the solution to the loser’s 
bid distribution and the unconditional payoffs, given by (5) and (6), we obtain the 
conditional value of the winner, ​​V​t​​​(b)​​ , by using equation (3) as ​​V​t​​​(b)​ = ​u ̅ ​ − b​.  
Using the recursion of the value function given by (2), it follows that the continua-
tion value of the winner is a martingale, i.e., ​E​[​V​t+1​​]​  = ​ V​t​​​(b)​  = ​ u ̅ ​ − b​.

The Winner’s Bidding Strategy.—Next, we derive the winner’s unconditional bid 
distribution ​​G​t​​​ , which in turn is determined by the loser’s optimization problem. 
The value function ​​W​t​​​ of the loser, as a function of his last bid, which here as well 
encapsulates his belief (on the equilibrium path) satisfies the optimality equation

(7)  ​​W​t​​​(b)​  =  ​max​ 
β
​  ​​{​ 

​G​t​​​(β)​ − ​G​t−1​​​(b)​
  _____________  

1 − ​G​t−1​​​(b)​
 ​​ (1 − δ )(​u ̅ ​ − β)​ + δ ​ 

1 − ​G​t​​​(β)​
 ___________ 

1 − ​G​t−1​​​(b)​
 ​ ​W​t+1​​​(β)​}​,

         t  ≥  1.​

To understand the loser’s payoff, we must distinguish between two events. The 
contemporaneous bid ​β  > ​  u ¯ ​​ can either win the current auction and hence yield 
a reward of ​​u ̅ ​ − β​ (after which bids jump to ​​u ̅ ​​) or it can be too low, in which case 
the loser remains in his loser’s status, until the subsequent period ​t + 1​ when he can 
expect a continuation value ​​W​t+1​​​(β)​​. The unconditional probability of winning (or 
losing) with a bid ​β​ becomes a conditional probability by conditioning on the pre-
vious event, in which the loser lost with ​b​ , so that the winner’s bid must have been 
at least as high. As before, it is useful to restate this equation with the help of an 
auxiliary function. Let ​​X​t​​​(b)​​ be the expected continuation value from losing with a 
bid ​b​ in period ​t − 1,​ or

(8)	​​ X​t​​​(b)​  ≔ ​ (1 − ​G​t−1​​​(b)​)​ ​W​t​​​(b)​.​

With this definition, we rewrite (7) to get

(9)  ​​ 
​X​t​​​(b)​

 ______ (1 − δ) ​   = ​ max​ 
β
​ ​​ {​(​G​t​​​(β)​ − ​G​t−1​​​(b)​)​ ​(​u ̅ ​ − β)​ + δ ​ 

​X​t+1​​​(β)​
 ______ (1 − δ) ​}​ ,  t  ≥  1.​

The value function, described in terms of the unconditional expected values, is again 
more accessible than the conditional values. But we observe that the past bid ​b​ of 
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the loser continues to appear on the right-hand side of the equation. First-order con-
ditions are then

(10) ​​ G​ t​ ′ ​​(β)​​(​u ̅ ​ − β)​ − ​(​G​t​​​(β)​ − ​G​t−1​​​(b)​)​ + ​  δ _ 
1 − δ ​ ​X​ t+1​ ′ ​ ​(β)​  =  0,     t  ≥  1.​

Note also that, from the envelope theorem applied to (9),

(11)	​​ X​ t​ ′ ​ (b)/(1 − δ)  =  − ​G​ t−1​ ′ ​  (b) (​u ̅ ​ − β ).​

To make further progress, some calculations will be required, and they will neces-
sitate to distinguish according to whether ​t​ is equal to, or larger than one. As we 
learned earlier (see (5)), the equilibrium bid of the loser is constant across periods 
for ​t  ≥  1​ , or ​​b​t​​  = ​ b​t+1​​​ , so that the first-order condition must hold for the choice ​
β  =  b​. It follows that we can describe the bidding behavior in terms of contempo-
raneous bid ​b​ alone for all periods ​t  >  1​ , i.e., from (10),

(12)	​​ G​ t​ ′ ​​(b)​​(​u ̅ ​ − b)​ − ​(​G​t​​​(b)​ − ​G​t−1​​​(b)​)​ + ​  δ _ 
1 − δ ​ ​X​ t+1​ ′ ​ ​(b)​  =  0.​

The property of constant bids across periods only arose in the continuation game 
after an initial winner and initial loser had been determined. The relationship 
between the initial bid ​b​ and the bid ​β​ after the determination of the “winner” and 
“loser” position respectively has yet to be established, which is why we assume first 
that ​t  ≥  2​. After forwarding the time index from ​t​ to ​t + 1​ in (11) and using the fact 
that ​β  =  b​ , we can eliminate ​​X​ t+1​ ′ ​  (β)​ from (10) to obtain

(13)	​ (1 − δ) ​G​ t​ ′ ​ (b) (​u ̅ ​ − b)  = ​ G​t​​ (b) − ​G​t−1​​ (b),  t  ≥  2.​

Because the support of ​​F​t​​​ and ​​G​t​​​ must coincide, it holds that ​​G​t​​ (​u ̅ ​)  =  1​. Thus, we 
have an ordinary differential equation and a boundary condition that can be solved 
for ​​G​t​​​  if ​​G​t−1​​​ is given.

Let us turn to ​​G​1​​​. We have already observed that the relationship between the 
contemporaneous bid ​β​ in period ​t  =  1​ and the preceding bid ​b​ in period ​t  =  0​ 
is more intricate than in later periods. Recall that the optimality equation in ​t  =  1​ , 
derived earlier in (10), states that

(14)	​​ G​ 1​ ′ ​​(β)​​(​u ̅ ​ − β)​ − ​(​G​1​​​(β)​ − ​G​0​​​(b)​)​ + ​  δ _ 
1 − δ ​ ​X​ 2​ ′ ​​(β)​  =  0.​

While it is no longer the case that ​β  =  b​ in ​t  =  1​ , the hypothesis of monotone 
bidding strategies allows us to relate the bid ​b​ in ​t  =  0​ to the bid ​β​ in ​t  =  1​ , noting 
that

(15)	​​ G​0​​​(b)​  = ​ F​0​​​(b)​  = ​ F​1​​​(β)​  = ​ (1 − q)​​(​u ̅ ​ − ​u 
̅
 ​)​/​(​u ̅ ​ − β)​,​
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where the final equality had been established in (5). Thus, the equations (13) and 
(14), along with ​​G​t​​ (​ 

_
 u ​)  =  1​ , all ​t  ≥  1​ , allow us to solve recursively for the distri-

butions ​​G​t​​​ , ​t  ≥  1​. The solution of (13) and (14) is the special case for two bidders 
of the formula given in the following lemma, where as before, ​​G​t​​ (​ u ¯ ​ ) − (1 − q)​ is 
the probability assigned by the high-valuation winner to the bid ​​​u 

̅
 ​​+​​​.

LEMMA 2 (The Winner’s Bid Distribution): The winner’s bid distribution is given 
by, for all ​t  ≥  1​ ,

(16)	​​ G​t​​ (b)  = ​  1 _ 
​δ​​ t​

 ​ F(b) + F ​(b)​​ ​ 
1 _ 

1−δ ​​ ​ ∑ 
τ=0

​ 
t

  ​​ ​ 1 − ​δ​​ τ−t​ _ τ !
 ​ ​​ (ln F ​(b)​​ −​  1 _ 

1−δ ​​)​​​ 
τ
​ , ​

on the support ​​[​​u 
̅
 ​​+​​ , ​u ̅ ​ − ​(1 − q)​​ n​ (​u ̅ ​ − ​u 

̅
 ​)]​​.

Recall that the distribution ​F​(b)​​ refers to the loser’s bid distribution obtained in 
Lemma 1. It follows from this formula that the bids of the winner are decreasing 
over time from ​t  ≥  1​ onward.

The Bidding Strategy in the Initial Period.—We are left to determine the bidding 
strategy in the initial period ​t = 0​ (at this stage, the distinction between winner and 
loser does not yet appear). Each high-valuation bidder maximizes

(17)	​​ max​ 
b
​  ​​{​F​0​​​(b)​​(​u ̅ ​ − b)​ + ​  δ _ 

1 − δ ​ ​Y​1​​​(b)​ + ​  δ _ 
1 − δ ​ ​X​1​​​(b)​}​.​

The bid ​b​ in the initial period determines the expected reward, as well as the contin-
uation value, conditional on being the winner, ​​Y​1​​​(b)​​ , or the loser, ​​X​1​​​(b)​​ , where we 
maintain the notation, introduced in (3) and (8), that already accounts for the proba-
bility of each event. If high-valuation bidders are indifferent over some interval, the 
profit from (17) must be independent of ​b​ over this interval. Thus, plugging ​​X​1​​​(b)​, ​
Y​1​​​(b)​​ into (17), straightforward algebra gives that

(18)	​​ F​0​​ (b) (​u ̅ ​ − b)  − δ(1 − q) (​u ̅ ​ − ​u 
̅
 ​)  ln ​F​0​​ (b)  = ​ K​0​​ , ​

for some constant ​​K​0​​​. This implicitly defines ​​F​0​​​ and can be explicitly solved using 
the Lambert function. The initial bid distribution at ​t  =  0:​

(19)	​​ F​0​​ (b)  =  (1 − q) ​​(− δ ​ ​u ̅ ​ − ​u 
̅
 ​ _____ 

​u ̅ ​ − b
 ​ ​W​−1​​​(− ​ ​e​​ −​ 1 _ δ ​​ _ δ  ​  ​ ​u ̅ ​ − b _____ ​u ̅ ​ − ​u 

̅
 ​ ​)​)​​​ 

1/n

​,​

where ​​W​−1​​​ is the branch −1 of the Lambert function.9 The support of this  
distribution is given by

9 The Lambert ​W​ function is the inverse function of ​f (x)  =  x ​e​​ x​​. The function ​f​ is not injective. For ​x  ∈  ℝ​, the 
function is defined only for ​x  ≥  − 1/e​  and is double-valued on ​(−1/e, 0)​. The alternate branch on ​[−1/e, 0)​ with ​
x  ≤  − 1​ is denoted ​​W​−1​​ (x)​ and decreases from ​​W​−1​​ (−1/e)  =  − 1​ to ​​W​−1​​ (​0​−​​ )   =  − ∞​. 
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	​ [​u 
̅
 ​, ​u ̅ ​ − ​(1 − q)​​ n​ (​u ̅ ​ − ​u 

̅
 ​)(1 − nδ ln (1 − q)) ] .​

THEOREM 1 (Separating Equilibrium): The initial bid distribution ​​F​0​​​(b)​​ and the 
continuation distributions ​​F​t​​​(b)​​ and ​​G​t​​​(b)​​ of loser and winner respectively form a 
separating Markov equilibrium.

The equilibrium strategies have only been described on path so far. The descrip-
tion of the equilibrium in terms of the off-path behavior is completed in the proof of 
Theorem 1. It uses the fact that the initial randomization of bids in conjunction with 
the unobservable nature of the bids extends the information contained in the on-path 
to the off-path bids. We conclude this section by commenting on uniqueness. Our 
separating equilibrium is the unique such equilibrium (there cannot be gaps or 
atoms in the high-valuation bidder’s distributions, by standard arguments), and as 
mentioned above, the limited monitoring gives each high-valuation bidder a strong 
incentive to bid more than ​​u 

̅
 ​​. However, ruling out equilibria in which this is not the 

case appears daunting because any candidate equilibrium in which high-valuation 
bidders bid ​​u 

̅
 ​​ in some periods loses the property that uncertainty is resolved once the 

initial winner loses. Consequently, we would no longer be able to elude considering 
continuation games characterized by less tractable belief hierarchies. We are only 
able to show that the high-valuation bidder cannot be willing to bid ​​u 

̅
 ​​ indefinitely.

D. The Separating Equilibrium: Summary

Let us sum up the main findings that were either mentioned in passing, or that 
follow from the equilibrium solution described in Theorem 1. First, the bids in the 
initial period are lower than in the static first-price auction. This is puzzling at first 
glance. After all, for every possible bid ​b​ , the winner of the initial bidding game has 
a higher continuation payoff than the loser. So it may seem that winning the initial 
auction is like winning the static auction, but with an additional prize provided by 
a more favorable continuation value. If the continuation value of winning or losing 
were independent of the current bid, then each bidder would bid more aggressively 
initially as it would look like the static auction, but with a prize larger than the 
flow payoff ​​u ̅ ​​. But the analysis of the initial bid, given by (17), demonstrates that 
continuation values depend on the information provided by the initial bid. The 
payoff contribution from winning, ​​Y​1​​​(b)​​ , is constant in ​b​. Since the probability 
of winning is increasing in the bid, this implies that the continuation value ​​V​1​​​(b)​​ , 
conditional on winning with ​b​ , is actually decreasing in ​b​. By contrast, the payoff 
contribution ​​X​1​​​(b)​​ from losing is decreasing in ​b​. Here, the continuation value ​​
W​1​​​(b)​​ from losing at higher ​b​ is not increasing sufficiently fast to offset the lower 
probability of losing with a higher bid. Thus, the initial bidding is less aggressive 
than in the first-price auction, and initial bids are depressed.

The winner’s bid decreases over time, except at the very top, where it is constant. 
Figure 1 shows how bids decrease over time with two bidders. Bids ​b​ are on the 
abscissa; the probability ​​G​t​​ (b)​ is on the ordinate. Higher curves correspond to later 
periods. That is, the probability assigned to the bid not exceeding a given value goes 
up over time, which means that over time bids go down.
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The reason why the winner decreases his bid over time is clear: he cautiously 
explores how low he can get while still winning. At some point, he is sufficiently 
confident that his opponents have low valuations to submit a bid ​​​u 

̅
 ​​+​​​ , which 

conclusively establishes whether or not this is the case. Formally, for fixed ​δ​ , 
the distribution ​​G​t​​​ converges pointwise to ​​δ​​​u 

̅
 ​​+​​​​​ , the Dirac distribution that assigns 

probability one to ​​​u 
̅
 ​​+​​​ , as ​t  →  ∞​.

Given that the winner lowers his bid over time, the loser has no reason to raise his. 
Although he has always lost so far, which should push him towards higher bids, he 
knows that the winner is coming down with his bids, so that by not raising his bid, 
he will win his unit perhaps later, but at a lower cost. The equilibrium balances these 
forces, and a constant bid is best.

The total discounted revenue of this dynamic auction is close to, but strictly 
below, the theoretical maximum (in the absence of reserve prices) given by the 
static auction. To see this, note that the outcome is efficient (a low-valuation bidder 
never gets the unit if there is a high valuation present), and that the payoff of a 
high-valuation bidder can be computed by considering what happens if he always 
makes the highest bid. In that case, he will win all units, and the price he will pay 
for this is equal to ​​u ̅ ​ − ​(1 − q)​​ n​ (​u ̅ ​ − ​u 

̅
 ​)​ , as in the static auction, except in the initial 

period, where it is lower. How much lower depends on the discount factor: if the 
bidders are very impatient (​δ​ near zero), then the initial bid distribution is close to the 
distribution in the static auction. This is not the case if they are very patient (​δ​ near 
one), but in that case, the relative importance of the first period in the auctioneer’s 
revenue is negligible (assuming that he shares the same discount factor).

Let us mention a few comparative statics, which follow from the characterization 
of the bid distribution. The results are proved in the supplementary Appendix. 

Figure 1

Note: Bid distribution for ​n = 2​ in periods ​t = 1, … , 6​ , ​q = 1/3​ , ​δ = 9/10​ , ​​   u ​​ = 1 = 1 −  ​​ u ¯ ​​ (bottom ​t = 1​ , top ​
t = 6​).
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Regarding the discount factor, it is immediate to check that, for fixed ​t​ , 
​​lim​δ→1​​ ​G​t​​ (b)  =  F(b),​ which is equal to the distribution of the losers’ bid, and is 
independent of ​t​. More generally, for fixed ​t​ , the distribution ​​G​t​​​ is decreasing in 
​δ​. That is, as is intuitive, the higher the discount factor, the slower the pace at which 
the winner lowers his bid over time. We summarize these observations in the next 
corollary.

COROLLARY 2 (Comparative Statics): For every ​q, n, δ​:

	 (i)	 The bids (of high-valuation bidders) jump up from ​t = 0​ to ​t = 1​. Thereafter, 
they are constant for losers and decreasing over time for the winner.

	 (ii)	 For a fixed ​t​ , the losers’ bids are independent of ​δ​, and the winner’s bid is 
increasing in ​δ​.

	 (iii)	 For a fixed ​t​ , bids increase with ​n​  and tend to a two-point distribution on 
​{​u 

̅
 ​, ​u ̅ ​}​ as ​n → ∞​.

	 (iv)	 Expected revenue tends to the revenue of the static auction as ​δ  →  1​.

III.  Observable Bids 

We shall now turn to the case in which all bids are observable. As soon as a 
high-valuation bidder submits an equilibrium bid that is not in the support of the 
distribution of the low valuation bidder, the game simplifies as the uncertainty 
about the valuation of this bidder is resolved. Moreover, as soon as it is commonly 
known, that two bidders have high valuations, then bidding reduces to the stating 
equilibrium by virtue of Refinement A. In the game, the immediate resolution of 
uncertainty occurs if the equilibrium is separating, that is, if bidders with different 
valuations use bidding distributions whose supports do not intersect. We shall see, 
however, that such separating equilibria do not exist, unless players are sufficiently 
few, or high valuations are sufficiently unlikely, as we establish in Subsection IIIA. 
This provides a stark contrast to the nonexistence of pooling equilibria when bids 
are unobservable as established in Section IIA. 

What then is the equilibrium of the game? Can there be a pooling equilibrium that 
can be sustained over the entire horizon? Or is there a semi-pooling equilibrium in 
which the separation by the high-valuation type occurs with positive probability at 
every period? In order to evaluate this, we need to know what the value of a devia-
tion from a pooling strategy would be. Following such a deviation only one bidder 
might reveal himself to have a high valuation, while all the other n bidders submit a 
bid ​​u _​​, pooling thereby with the low-valuation type. We must therefore first understand 
this continuation game with one-sided incomplete information before we can solve the 
original game. We turn to the game of one-sided incomplete information in Subsection 
IIIB as a preamble to the analysis of the original game in Subsection IIIC.
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A. On the Difficulty of Separating

An equilibrium is separating if the bid ​​u 
̅
 ​​ (which is the equilibrium bid of the 

low-valuation bidder) is not an equilibrium bid for the high-valuation bidders, so 
that, on path, all information is disclosed immediately. Note that this is a prerequisite 
for efficiency and revenue maximization.

Suppose then that a high-valuation bidder does not assign positive probability to 
the bid ​​u 

̅
 ​​ in the initial period. Obviously then, he will bid more. By bidding ​​​u 

̅
 ​​+​​​ , he 

gets ​​(1 − q)​​ n​ (​u ̅ ​ − ​u 
̅
 ​)​. By deviating and bidding ​​u 

̅
 ​​ in this period, followed by ​​​u 

̅
 ​​+​​​ , a 

high-valuation bidder gets

(20)  ​(1 − δ) ​(1 − q)​​ n​ ​ (​u ̅ ​ − ​u 
̅
 ​) _______ (n + 1) ​  + δ(​(1 − q)​​ n​ + (1 − δ ) nq ​(1 − q)​​ n−1​ ) (​u ̅ ​ − ​u 

̅
 ​) .​

To understand (20), note that, by bidding ​​u 
̅
 ​​ in the current period, he gets a (flow) 

reward only if all his opponents have low valuations as well, and even then,  
he wins only with probability ​1/(n + 1)​, an object that is worth ​​u ̅ ​ − ​u 

̅
 ​​ to him.  

This is the first term. In the following period, however, he will be believed to be 
a low-valuation bidder, and this allows him to win one unit at a price arbitrarily 
close to ​​u 

̅
 ​​ provided that there are not two or more high-valuation bidders, hence the  

second term.
However, separation yields the same payoff as the static auction, ​​(1 − q)​​ n​ (​u ̅ ​ − ​u 

̅
 ​)​.  

This is because the continuation payoff of a high-valuation bidder is indepen-
dent of the specific bid above ​​ u ¯ ​​ that he submits, so that he has the same incen-
tives as in the static auction, which gives him a payoff ​(1 − δ) ​(1 − q)​​ n​ (​u ̅ ​ − ​u 

̅
 ​)​.  

He further gets ​δ ​(1 − q)​​ n​ (​u ̅ ​ − ​u 
̅
 ​)​ from the second period onward if it turns out that 

all other bidders have low valuations.

PROPOSITION 2 (Difficulty of Separating): For all positive ​q​ and ​δ​ , there exists 
​​ 
_

 n ​​, such that for all ​n  > ​ 
_

 n ​​ , a separating Markov equilibrium does not exist with 
observable bids.

Comparing the two payoffs, we find that separation is not an equilibrium if and 
only if

(21)	​ q  ≥ ​ q​​ o​  ≔ ​   1 ____________  
1 + (n + 1 ) δ ​ .​

This condition, expressed in terms of the prior probability of a high valuation, is 
satisfied if there are sufficiently many bidders and/or if the discount factor is suffi-
ciently high. Proposition 2 then has to be contrasted with Proposition 1, where we 
showed that with unobservable bids pooling is never an equilibrium and constructed 
a separating equilibrium for all possible values of ​q, δ​, and ​n​.

B. The Game of One-Sided Incomplete Information

We consider here the game in which one bidder, say bidder 1, is commonly 
known to have a high valuation, while each of the other ​n​ bidders is believed to have 
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a high valuation with probability ​q​. Accordingly, bidder 1 is uninformed (about the 
valuations of the other bidders), while all other bidders are informed (about the 
valuation of bidder 1). As we mentioned in the beginning of this section, this game 
is only interesting for us as a continuation game of the original game, in which one 
player through a bid strictly higher than ​​u _​​ has revealed himself to be a high valuation 
bidder. For notational ease, we will nonetheless in this section restart the clock at 
t = 0, always keeping in mind that in the original game, this continuation game can 
at the earliest appear in period t = 1.

Let ​​F​ t​ 
U​​ denote the bid distribution of the uninformed player and ​​F​ t​ 

I​​ the common 
bid (unconditional) distribution of the other players. This represents a slight abuse 
of notation; as in a Markov equilibrium, the state variable, i.e., the beliefs, deter-
mines the distributions, not the period. But as there is a one-to-one correspondence 
between time and beliefs on the equilibrium path, using time as an index facilitates 
the exposition.10 Because any equilibrium bid different from ​​u 

̅
 ​​ by an informed bid-

der establishes common knowledge that there is a second high-valuation bidder, after 
which the game becomes trivial, we must only understand how play proceeds along 
histories in which all informed bidders have bid ​​u 

̅
 ​​ in every period so far. Let ​​q​t​​​ denote 

the probability that (any of) the informed bidder’s valuation is high at the beginning 
of period ​t​ , given any history on the equilibrium path in which all informed bidders 
bid ​​u 

̅
 ​​ in all periods up to (and including) ​t − 1​ , and set ​​q​0​​  ≔  q​. Note that the past 

bids of the uninformed bidder do not affect this belief, so that this is really a func-
tion of time only. Let ​T ∈ ​ℕ​0​​ ∪ {+∞}​ denote the length of the longest such history 
when at least one informed bidder has a high value, i.e., there exists no history on 
the equilibrium path in which all high-value informed bidders submit bids equal to 
​​u 
̅
 ​​ for ​t  >  T​ periods.11 Finally, let ​​​ b ̅ ​​t​​​ denote the highest bid in the bid support in 

period ​t  ≤  T​ (conditional on a history in which all informed bidders bid ​​u 
̅
 ​​ through-

out, a qualification we shall omit from now on). While this is a private-values set-
ting, this game and its solution bear strong similarities with the common-values 
game of Hörner and Jamison (2008). Thus, we keep the analysis concise.

Because the uninformed bidder always bids at least ​​​u 
̅
 ​​+​​​ (he has nothing to lose 

from doing so, given the Markov assumption), a high-valuation informed bidder will 
not submit the bid ​​u 

̅
 ​​ forever (as he would then lose forever). Hence, ​T  <  ∞​. By 

standard arguments, the informed bidders must randomize in period ​t​ between the 
bid ​​u 

̅
 ​​ (at least as long as ​t  <  T​ ) and mixing over the interval ​(​u 

̅
 ​, ​​ b ̅ ​​t​​ )​ , for some ​​​ b ̅ ​​t​​  > ​

u 
̅
 ​​. Further, the uninformed bidder must bid ​​​u 

̅
 ​​+​​​ with positive probability, for other-

wise the informed high-valuation bidder would be unwilling to submit bids arbi-
trarily close to, but above ​​u 

̅
 ​​ (such a revelation would be in vain, as it would yield 

a zero immediate reward and zero continuation payoff). Because the low-valuation 
bidder bids ​​u 

̅
 ​​ for sure, Bayes’ rule tells us that the probability that an informed bid-

der is of the low type in period ​t + 1​ , given such a history, is given by

(22)	​ 1 − ​q​t+1​​  = ​ 
1 − ​q​t​​ ______ 
​F​ t​ 

I​ (​u 
̅
 ​)
 ​ ,  ​q​0​​  =  q, ​ q​T+1​​  =  0.​

10 To prevent any confusion, we avoid the notation ​F, G​ introduced in the unobservable case. 
11 If ​T  =  + ∞​ , there exists arbitrarily long such histories. If ​T  <  + ∞​ , then we must have ​​F​ T​ I ​ (​u 

̅
 ​)  =  1 − ​q​T​​ ,​ 

since the high-valuation bidder must bid strictly more than ​​u 
̅
 ​​ in that period. Hence, ​​q​T+1​​  =  0​. 
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Because the reward from every bid in the interval ​b  ∈  (​u 
̅
 ​, ​​ b ̅ ​​t​​ ]​ must be the same 

(for the informed bidder, this is because the continuation payoff is then zero; for 
the uninformed bidder, this follows from the Markov assumption), we have, for all ​
t  ≤  T​ ,

(23)	​​ F​ t​ 
U​ (b) ​F​ t​ 

I​ ​(b)​​ n−1​ (​u ̅ ​ − b)  = ​ u ̅ ​ − ​​ b ̅ ​​t​​  = ​ F​ t​ 
I​ ​(b)​​ n​ (​u ̅ ​ − b), ​

and so ​​F​ t​ 
U​ (b)  = ​ F​ t​ 

I​ (b)  ≕  ​F​t​​ (b)​ for all ​b, t,​ where ​​F​ t​ 
U​ (​u 

̅
 ​)​ is the probability assigned 

by the uninformed bidder to a bid equal to ​​​u _​​+​​​, as we observed at the beginning 
of this paragraph that the uninformed bidder always bids at least ​​​u _​​+​​​. Moreover, 
the informed bidder does not place positive probability on ​​​u _​​+​​​, and so ​​F​ t​ 

I​​(​​u _​​) can 
be unambiguously interpreted as the probability that the informed bidder bids ​​u _​​.  
Finally, because an informed bidder is indifferent between bidding just above ​​u 

̅
 ​​ in 

period ​t  <  T​ and bidding ​​u 
̅
 ​​ followed (if no informed bidder bid more than ​​u 

̅
 ​​ in 

period ​t​) by a bid just above ​​u 
̅
 ​​ in period ​t + 1​ , we have, for all ​t  <  T​ ,

(24)	​​ F​ t​ 
n​ (​u 

̅
 ​)  =  δ ​F​ t​ 

n−1​ (​u 
̅
 ​) ​F​ t+1​ 

n  ​ (​u 
̅
 ​),  or ​ F​t​​ (​u 

̅
 ​)  =  δ ​F​ t+1​ 

n  ​ (​u 
̅
 ​).​

The equality must be replaced by an inequality in period ​T​ , i.e., ​​F​T​​ (​u 
̅
 ​)  ≥  δ​. 

Equations (22)–(24) then allow us to solve for the equilibrium.12 Given a prior 
belief ​q  <  1​ , it follows from (24) that, as ​δ  →  1​ , ​T  →  ∞​, and ​​δ​​ T​  →  1​ for ​
T  =  T(q)​. That is, uncertainty is resolved arbitrarily fast relative to ​δ​ , although the 
time it might take (in fact, the expected time it takes) grows without bound. We can 
summarize our findings as follows.

LEMMA 3 (Bidding with One-Sided Information and Observable Bias):

	 (i)	 The equilibrium bid distribution ​​F​t​​​(b)​​ is increasing in ​t​ for all ​b​ (i.e., the 
uninformed bidder’s bids decrease on average).

	 (ii)	 (At least) one informed high-valuation bidder reveals his type by period ​
T  <  ∞​ , where ​​lim​δ→1​​ T  =  ∞​ , yet ​​lim​δ→1​​ ​δ​​ T​  =  1​.

While this equilibrium exhibits interesting features, only the resulting payoffs 
matter for the analysis in the game in which all players are symmetrically informed. 
The payoff of a high-valuation informed bidder can be computed from the strategy 

12 To see this, note that by “telescoping” (22) for ​t  =  0, … , T​ , we get ​1 − q  = ​ ∏ t=0​ 
T  ​​ ​F​t​​ (​u 

̅
 ​)​ , which com-

bined with (24) gives ​​F​T​​ (​u 
̅
 ​)  =  1 − ​q​T​​​ as a function of ​T​ and ​q​. The requirement that ​​F​T−1​​ (​u 

̅
 ​)  ≤  δ  ≤ ​ F​T​​ (​u 

̅
 ​)​  

yields for ​n > 1​, ​T = max  ​{ τ : ​δ​​ ​ 
​n​​ τ+1​−1 _ 
​(n−1)​​ 2​

 ​ − ​ τ+1 _ 
n−1

 ​​  ≥  1 − q}​,​ ​​(for n  =  1 , following the same steps, 

T  =  max  ​{ τ : ​δ​​ ​ 
τ(τ+1)

 _ 
2

 ​ ​  ≥  1 − q}​)​​, which pins down ​​q​T​​​. (Note that ​T  →  ∞​ , ​​δ​​ T​  →  1​ as ​δ  →  1​ follows.) 
Equation (23) for ​b  = ​  u ¯ ​​ then gives ​​​ b ̅ ​​t​​​ and so ​​F​t​​ (b)​. 
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of always bidding ​​u 
̅
 ​​ until period ​T − 1​  and slightly above ​​​u 

̅
 ​​+​​​ in period ​T​ (assuming 

no informed bidder bid more than ​​u 
̅
 ​​ until then). The payoff is then

	​​ V​​ I​ (q) ≔ (1 − δ) ​δ​​ n/(​n​​ T−1​)(n−1)​ ​F​T​​ ​(​u 
̅
 ​)​​ ​n​​ T+1​​ (​u ̅ ​ − ​u 

̅
 ​)  →  0​

as ​δ  →  1​— an informed player can win at most once, so that his normalized pay-
off necessarily tends to 0. Writing out the payoff ​​V​​ U​​ of the uninformed player is 
a little messier and so is omitted here. (See the online Appendix for the explicit 
expression in (A1) and an asymptotic expansion as ​δ  →  1​.) Note that, from period ​
T​ onward, in case no informed bidder separated so far, his continuation payoff is 
​​F​T​​ ​(​u 

̅
 ​)​​ n​ (​u ̅ ​ − ​u 

̅
 ​).​ Since ​​δ​​ T​  →  1​ as ​δ  →  1​ , it follows that ​​V​​ U​ (q)  → ​ (1 − q)​​ n​ (​u ̅ ​ − ​u 

̅
 ​)​:  

asymptotically, the payoff to the uninformed agent is only positive in the event in 
which all his opponents have low valuations. This is good for the auctioneer in this 
game, who thus gets (asymptotically) a maximal revenue.

C. Back to the Original Game

Building on the bidding behavior in the continuation game with one-sided incom-
plete information, we may now return to the original game in which the bidders 
all have symmetric (but incomplete) information about each other. We now ask 
when pooling is an equilibrium outcome when all bidders’ valuations are equally 
unknown. We can pursue this question now that we know what would happen if 
one of the players were to deviate from the pooling strategy. We shall further see 
that there is an intermediate region of prior beliefs when the equilibrium involves 
semi-pooling. In the semi-pooling equilibrium, the bidder with the high valuation 
continues to submit low bids equal to ​​u _​​ with a probability that is strictly positive but 
less than one.

We begin with a pooling equilibrium. Clearly, a pooling equilibrium must involve 
all bidders submitting the bid ​​u 

̅
 ​​ (given Refinement A). The payoff to a high-valuation 

bidder is then ​(​u ̅ ​ − ​u 
̅
 ​)/(n + 1)​. The best deviation in all periods for a high-valuation 

bidder involves bidding ​​​u 
̅
 ​​+​​​ , which garners ​(1 − δ ) (​u ̅ ​ − ​u 

̅
 ​) + δ ​V​​ U​ (q ) (​u ̅ ​ − ​u 

̅
 ​),​ 

assuming that such a deviation is ascribed to a high-valuation player, so that the 
game with one-sided incomplete information ensues. Therefore, pooling is an equi-
librium if and only if

(25)	​​   1 _ 
n + 1

 ​  ≥  1 − δ + δ ​V​​ U​ (q)/(​u ̅ ​ − ​u 
̅
 ​).​

Because ​​V​​ U​​(q), which we computed above in Section IIIB, is monotonically decreas-
ing in ​q​  and bounded above by ​​u ̅ ​ − ​u 

̅
 ​​ , this gives a lower bound ​​​q ̅ ​​​ o​​ to the values of ​q​ 

for which such an equilibrium exists, and it is easy to see that ​​​q ̅ ​​​ o​  > ​​  q 
¯

 ​​​ o​​.

PROPOSITION 3 (Possibility of Pooling): For all positive ​q​ , there exists ​​(​
_

 δ ​, ​ 
_

 n ​)​​, 
such that for all ​δ  > ​

_
 δ ​​ and ​n  > ​ 

_
 n ​​ , a pooling Markov equilibrium does exist with 

observable bids.
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Let us now focus on ​δ  →  1​. Because ​​V​​ U​  → ​ (1 − q)​​ n​ (​u ̅ ​ − ​u 
̅
 ​)​ , we get

(26)	​ q  ≥ ​​ q ̅ ​​​ o​  →  1 − ​(n + 1)​​ −1/n​ .​

The left-hand side of (25) tends to what a high-valuation bidder can secure, if 
low-valuation bidders do not bid more than ​​u 

̅
 ​​. Indeed, a high-valuation bidder can 

secure ​​(1 − q)​​ n​ (​u ̅ ​ − ​u 
̅
 ​)​ by always bidding ​​​u 

̅
 ​​+​​​. Thus, the pooling equilibrium exists 

whenever it yields an individually rational payoff to the high-valuation bidder. As 
we shall see, the same holds when only the winner’s bid is observed.

Recall that a separating equilibrium exists whenever ​q  ≤ ​​  q 
¯

 ​​​ o​​. This leaves us 
with the (nonempty) interval ​(​​ q 

¯
 ​​​ o​, ​​q ̅ ​​​ o​ )​. In that case, the equilibrium must involve 

semi-pooling. That is, the high-valuation bidder puts positive probability on ​​u 
̅
 ​​ , but 

he also continuously randomizes over some interval of higher bids. In the event 
that all realized bids are ​​u 

̅
 ​​ , bidders assign a growing probability to the event that 

their opponents have a low valuation, so that, at some point, beliefs are such that a 
separating equilibrium exists. In the supplementary Appendix, we show that such 
(not necessarily unique) semi-pooling equilibria exist in this intermediate range of 
values for ​q​ , that a semi-pooling equilibrium cannot end up in pooling in finite 
time, and that no such equilibrium can exist if ​q  ≤ ​​  q 

¯
 ​​​ o​​ , i.e., it cannot exist when a 

separating equilibrium exists. Semi-pooling equilibria may also exist for ​q  ≥ ​​ q ̅ ​​​ o​​ 
(that is, they coexist with pooling equilibria); in fact, we prove in the online Appendix 
A that they do for any such prior when ​δ​ is sufficiently close to one, and that their 
revenue converges to the revenue from the separating equilibrium (as ​δ  →  1​).  
We summarize this discussion in the following theorem; see also Figure 2.

THEOREM 3: A (Markov) equilibrium always exists. Furthermore, if

	 (i)	​ q  ∈  [0, ​​q 
̅
 ​​​ o​ ]​ , the unique equilibrium is separating;

	 (ii)	​ q  ∈  ( ​​q 
̅
 ​​​ o​ , 1]​ , no separating equilibrium exists. Furthermore, if

		    (a) ​ q  ∈  ( ​​q 
̅
 ​​​ o​ , ​​q ̅ ​​​ o​ ]​ , all equilibria are semi-pooling;

		    (b) ​ q  ∈  ( ​​q ̅ ​​​ o​ , 1]​ , a pooling equilibrium exists.

To summarize, as ​δ  →  1​ , the revenue converges to the optimal revenue (without 
reserve price) if and only if ​q  <  1 − ​(n + 1)​​ −1/n​​ , a decreasing function of ​n​ (that 

Figure 2. Markov Equilibria in the Observable Case, as a Function of q
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tends to ​0​ as ​n  →  ∞​). Otherwise, because bidders all use the same low bid, the 
auctioneer’s revenue is equal to ​​u 

̅
 ​​.

IV.  Observable Winning Bids

Finally, we consider the environment in which the bid and the identity of the 
winner are disclosed after each auction. While we assume that the winner's identity 
is disclosed, this is not necessary: the equilibrium would remain unchanged if we 
did not disclose the identity of the winner but merely the winning bid.13 As in the 
previous section in which all bids were observable, we are particularly interested 
in understanding whether pooling equilibria exist. A possible deviation from the 
candidate pooling strategy is a deviation in which the winning bidder reveals him-
self through the bid. Hence, we have to first understand the resulting continuation 
game. Thus, we start in Subsection IVA with the case in which exactly one bidder 
is known to have a high valuation, because such informational structures may arise 
as continuation games starting from initially symmetric information environments. 
We then return to the original game in Subsection IVB. The analysis in this section 
proceeds largely parallel to the previous section. However, the equilibrium analy-
sis of the continuation game with one-sided incomplete information is somewhat 
more involved due to limited observability of the bids. Since only the winning bid 
is observed, the updating process about the bids of the other players is determined 
by the random upper bound given by the realized winning bid. Thus, the resulting 
Bayesian updating is more intricate. 

A. The Continuation Game with One-Sided Incomplete Information

We already analyzed a continuation game with one-sided incomplete information 
in the environment with observable bids. There, every bid by the informed bidder 
strictly above ​​u 

̅
 ​​ revealed that the bidder has a high valuation. Thus, the evolution of 

the posterior belief had a simple binary structure. Either the bids of the informed 
agent were all equal to ​​u 

̅
 ​​ , and then the posterior declined from ​​q​t​​​ to ​​q​t+1​​​ , or at 

least one of the informed bids was above ​​u 
̅
 ​​ , and then uncertainty was resolved. In 

the current environment where only the winning bid is observable, the updating 
process depends on the realized bid of the uninformed bidder. His bid, as long as it 
is winning, provides an upper bound for losing bids. Therefore, the level of his bid 
determines the rate at which updating occurs. In contrast to the observable case, it 
is therefore convenient to describe the strategies in terms of the commonly known 
uninformed bidder’s posterior belief about the informed bidder’s valuation.

So suppose that a player, bidder 1, say, is known to have valuation ​​u ̅ ​​.  
His opponents, however, have privately known and independently drawn valuations. 

13 If the identity is not disclosed, then a bidder who has not won might not know whether the winning bids were 
submitted by the same or different bidders; but if two different bidders won with bids above ​​u _​​, it would still be the 
case that the two of them would commonly know that there are two high-valuation bidders, and bids would then 
be ​​ 

_
 u ​​ from that point on. Notice that the same argument applies in the earlier analysis with unobservable bids. That 

is, there, we could have allowed to disclose the identity of the winning bidder (and nothing else), and the equilib-
rium analysis would not have changed at all.
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The probability with which each of these bidders has a high valuation is denoted ​q​ , 
as before. Bidder 1 is the uninformed bidder, while the other bidders are informed. 
We begin with a few observations.

Because bidder 1’s valuation is known, he has nothing to lose from breaking 
any tie in his favor. By winning, he not only gets an immediate reward, but he also 
increases the probability that the game “goes on” (if another bidder outbids him, 
then it is known that there are two high-valuation bidders, and so their bids are ​​u ̅ ​​ 
from then on). Thus, the uninformed bidder bids at least ​​​u 

̅
 ​​+​​​.

Any informed high-valuation bidder has no incentive to bid ​​u 
̅
 ​​ either. Such a bidder 

will never be able to win more than one unit because, by the previous observation, 
he needs to bid at least ​​​u 

̅
 ​​+​​​ to win and doing so would reveal his valuation as well. 

So the best he can hope for is winning at a price arbitrarily close to, but above ​​u 
̅
 ​​

. So bidding, say, ​​u 
̅
 ​ + ε​ , for ​ε  >  0​ small enough, does strictly better than bidding ​​

u 
̅
 ​​. That is, denoting by ​​F​ q​ 

I ​​ the common informed bidder’s distribution, given that 
each of them is believed to have a high valuation with probability ​q​ , it holds that  
​​F​ q​ 

I ​ (​u 
̅
 ​)  =  1 − q​.

The bids of the uninformed bidder affect how much he learns about the informed 
bidders: he is more likely to win with a higher bid, but such a bid is less informative 
about the probability that at least one of the informed bidders has a high valuation. 
His bid distribution ​​F​ q​ 

U​​ is therefore also indexed by the belief ​q​. The uninformed 
bidder must randomize over some interval ​[ ​​u 

̅
 ​​+​​ , ​​ 

_
 b ​​q​​ ]​ , for some bid ​​​ 

_
 b ​​q​​​ , given the 

common belief ​q​. If he did play a pure strategy, the informed bidders would outbid 
him by a very small amount, so that this could not be optimal. He cannot be the only 
player submitting bids in this range, so the high-valuation informed bidder must do 
so as well.

We are now ready to solve for the equilibrium. Observe that by bidding ​​​ 
_

 b ​​q​​​ , the 
uninformed bidder prevents any learning, since he wins for sure and only his own 
bid is observed. While in equilibrium he randomizes in every period, one optimal 
strategy consists in making this same bid forever. At the opposite end, by bidding 
​​​u 
̅
 ​​+​​​ , he ensures that he learns perfectly his opponent’s type, since any informed bidder 

with a high valuation bids strictly more. Hence, denoting by ​​V​​ U​ (q)​ the uninformed 
bidder’s payoff given belief ​q​ , we have, for all ​q​ ,

(27)	​​ V​​ U​ (q)  = ​ (1 − q)​​ n​ (​u ̅ ​ − ​u 
̅
 ​)  = ​ u ̅ ​ − ​​ 

_
 b ​​q​​ .​

Note that, by Bayes’ rule, the probability that the uninformed bidder assigns to any 
of his opponents having a low valuation, conditional on winning with a bid ​b​ , is 
given by ​(1 − q)/​F​ q​ 

I ​ (b)​ , where ​q​ is his prior belief. Therefore, we must have, more 
generally,

	​​ (1 − q)​​ n​ (​u ̅ ​ − ​u 
̅
 ​)  = ​ F​ q​ 

I ​ ​(b)​​ n​ (1 − δ ) (​u ̅ ​ − b )  + δ ​(1 − q)​​ n​ (​u ̅ ​ − ​u 
̅
 ​),​

where we use the first equality of (27) to eliminate ​​V​​ U​​. It follows that

(28)	​​ F​ q​ 
I ​ (b)  =  (1 − q) ​​(​ ​u ̅ ​ − ​u 

̅
 ​ _____ 

​u ̅ ​ − b
 ​)​​​ 

1/n

​ .​
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Therefore, any informed bidder must bid as in the static auction (and as the losers 
in the repeated auction with unobservable bids). Let us turn now to the informed 
bidders’ problem. By bidding ​​​ 

_
 b ​​q​​​ , such a bidder wins once and “ends” the game. So 

his payoff ​​V​​ I​ (q)​ must satisfy

(29)	​​ V​​ I​ (q)  =  (1 − δ) (​u ̅ ​ − ​​ b ̅ ​​q​​ )  =  (1 − δ) ​(1 − q)​​ n​ (​u ̅ ​ − ​u 
̅
 ​), ​

where we have used (27) to obtain the second equality. More generally, his payoff 
from bidding ​b​ consists of two terms. With probability ​​F​ q​ 

U​ (b) ​F​ q​ 
I ​ ​(b)​​ n−1​​ , he is the 

highest bidder and wins. If he loses, then he only gets a positive continuation pay-
off if the uninformed bidder wins. That is, the uninformed bidder must bid some ​
β  >  b​ , and all other informed bidders must bid less than ​β​. Thus,

​​V​​ I​ (q)  =  (1 − δ)​(1 − q)​​ n−1​​​(​u ̅ ​ − ​u 
̅
 ​)​​​ ​ 

n−1 _ n  ​​​(​F​ q​ 
U​ (b)​(​u ̅ ​ − b)​​ ​ 

1 _ n ​​ + δ​∫ 
b
​ 
​​ 
_

 b ​​q​​​​ ​(​u ̅ ​ − β)​​ ​ 
1 _ n ​​  d​F​ q​ 

U​(β))​,​

where we use (28) and (29). Plugging into (29) gives, for all ​b​ in the support of ​​F​ q​ 
I ​​ ,

	​ (1 − q) ​(​u ̅ ​ − ​u 
̅
 ​)​​ ​ 

1 _ n ​​  = ​ F​ q​ 
U​ (b) ​(​u ̅ ​ − b)​​ ​ 

1 _ n ​​ + δ ​∫ 
b
​ 
​​ 
_

 b ​​q​​​​ ​(​u ̅ ​ − β)​​ ​ 
1 _ n ​​  d​F​ q​ 

U​(β ).​

Because this is an identity with respect to ​b​  and because the first and last terms are 
differentiable in ​b​ , the second term must be as well. Taking derivatives yields

	​​ 
d​F​ q​ 

U​ (b)/db
 _ 

​F​ q​ 
U​ (b)

 ​   = ​   1 _ 
n(1 − δ) ​  ​ 

1 _ 
​u ̅ ​ − b

 ​ .​

We can integrate and use that ​​F​ q​ 
U​ (​​ 

_
 b ​​q​​ )  =  1​ (where ​​​ b ̅ ​​q​​​ is determined by (27)) to get

(30)	​​ F​ q​ 
U​ (b)  = ​​ ((1 − q) ​​(​ ​u ̅ ​ − ​u 

̅
 ​ _____ 

​u ̅ ​ − b
 ​)​​​ 

​ 1 _ n ​
​)​​​ 

​  1 _ 
1−δ ​

​, ​

where as usual ​​F​ q​ 
U​ (​u 

̅
 ​)  = ​ (1 − q)​​ ​ 

1 _ 
1−δ ​​​ is the probability attached to the bid ​​​u 

̅
 ​​+​​​.  

The uninformed bidder bids more aggressively than the informed bidders, as 
winning carries the additional benefit of prolonging the game. This benefit becomes 
predominant as the discount factor is high, and the uninformed bidder is then likely 
to make a bid that is near the upper end of the support. Equations (28) and (30) 
characterize the equilibrium of the game with one-sided incomplete information, 
with payoffs given by (27) and (29). We summarize this discussion in the next 
proposition.
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PROPOSITION 4 (Bidding with One-Sided Information and Winner-Only 
Observable Bids): The game with one-sided incomplete  information admits exactly 
one (Markov) equilibrium. It is such that:

	 (i)	 The informed bidders bid as in the static game, while the uninformed bidder 
bids more aggressively.

	 (ii)	 The uninformed bidder’s bids decrease (weakly) over time. The time until the 
uninformed bidder loses is finite (a.s.), but admits no finite bound.

It is informative to contrast the bidding behavior in the observable and the 
winner-only observable environment. Intuitively, in the observable bid regime, the 
informed bidders should bid more cautiously as any bid above ​​u 

̅
 ​​ will reveal that the 

bidder has a high valuation. The informed bidder is therefore concerned that a bid 
higher than ​​u 

̅
 ​​ would reveal his valuation without necessarily winning the object.  

The bidding strategy of an informed bidder in the observable environment is less 
aggressive. In particular, from (22), with observable bids, the probability of a low 
bid is

	​​ F​ t​ 
I​​(​u 

̅
 ​)​  = ​ 

1 − ​q​t​​ _ 
1 − ​q​t+1​​

 ​  >  1 − ​q​t​​ ,​

which is larger than in the winner-only observable bid environment, in which it is given 
by ​​F​ t​ 

I​​(​u 
̅
 ​)​  =  1 − ​q​t​​​. In fact, given the characterization of the bidding distribution 

given by (23) and (28), it follows that the upper bound of the bids is lower, and more 
generally, that the bid distribution with observable bids is first-order stochastically 
dominated by the bid distribution with winner-only observable bids. Given the more 
defensive posture of the informed bidders in the observable environment, it then 
follows that the uninformed bidder is also bidding less aggressively. In fact, the bid 
distribution of the uninformed bidder in the observable environment is also first-order 
stochastically dominated by the bid distribution with winner-only observable bids, 
as can be directly inferred by comparing (23) with (30). If we restrict momentarily 
attention to the continuation game in which one player has revealed his high val-
uation, then we find that the revenue is higher in the winner-only observable case 
relative to the observable case.14

B. Back To The Original Game

We start with the necessary and sufficient conditions for a pooling equilibrium 
to exist. We now return to the original game in which all bidders initially have 
symmetric but incomplete information about each other. Assume all bidders submit 

14 This is immediate from the expected payoffs, given that both auctions are efficient. ​​V​​ U​​ achieves the obvious 
lower bound on the uninformed bidder’s payoff in the winner-only observable case (see (27)), so it is lower than in 
the observable case. Similarly, the informed bidder’s payoff is lower in the winner-only observable case (compare 
the upper end of the bid supports in the initial period, which determine the informed bidder’s revenue). 
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the bid ​​u 
̅
 ​​ with probability one. By doing so, a high-valuation bidder gets ​(​u ̅ ​ − ​u 

̅
 ​)/

(n + 1)​. By bidding ​​​u 
̅
 ​​+​​​ instead, which is the best alternative, he gets

(31)	​ (1 − δ) (​u ̅ ​ − ​u 
̅
 ​)  + δ ​V​​ U​ (q)  =  (1 − δ) (​u ̅ ​ − ​u 

̅
 ​) + δ ​(1 − q)​​ n​ (​u ̅ ​ − ​u 

̅
 ​), ​

where the equality uses (27), which gives us the continuation payoff from the con-
tinuation game that we studied in Section IVA. We can then establish the following 
result.

PROPOSITION 5 (Possibility of Pooling): For all positive ​q​ , there exists ​​(​
_

 δ ​, ​ 
_

 n ​)​​, 
such that for all ​δ  > ​

_
 δ ​​ and ​n  > ​ 

_
 n ​​ , a pooling Markov equilibrium does exist with 

winner-only observable bids.

By comparing the two payoff streams above, we see that pooling is an equilib-
rium whenever

(32)	​​   1 _ 
n + 1

 ​  ≥  1 − δ + δ ​(1 − q)​​ n​ , ​

i.e., the belief ​q​ should exceed some threshold ​​q​​ w​​. It is easy to see that ​​q​​ w​  > ​​ q ̅ ​​​ o​​.15 
Note that, as ​δ  →  1​ ,

(33)	​​ q​​ w​  →  1 − ​(n + 1)​​ −1/n​, ​

the same threshold as with observable bids.
Consider now a separating equilibrium, i.e., assume that, in the initial period, all 

high-valuation bidders submit bids that are at least ​​​u 
̅
 ​​+​​​. The bid distribution ​​F​q​​​ on 

​[​u 
̅
 ​, ​​ b ̅ ​​q​​ ]​ must then satisfy

​​F​q​​ ​(b)​​ n​​((1 − δ) (​u ̅ ​ − b) + δ ​V​​ U​​(1 − ​ 
1 − q

 _ 
​F​q​​ (b) ​)​)​ + δ ​∫ 

b
​ 
​ 
_

 b ​
​​ ​V​​ I​​(1 − ​ 

1 − q
 _ 

​F​q​​ (β) ​)​ nF ​(β)​​ n−1​ d​F​q​​ (β)

      = (1 − δ) (​u –​ − ​ b ̅ ​)  + δ ​V​​ U​ (q),​

where the two terms of the left-hand side are the payoffs from winning and losing 
with a bid ​b  > ​ u 

̅
 ​​ , and the right-hand side is this payoff computed for ​b  = ​  b ̅ ​​. 

Simplifying (using (27) and (29)) gives

	​​ F​q​​ ​(b)​​ n​ (​u ̅ ​ − b )  + δn ​(1 − q)​​ n​ (​u ̅ ​ − ​u 
̅
 ​) ​∫ 

b
​ 
​ 
_

 b ​
​​ ​ 
d​F​q​​ (β)

 _ 
​F​q​​ (β) ​  = ​ u ̅ ​ − ​ 

_
 b ​.​

15 This is because the uninformed bidder’s payoff in the game with observable bids, ​​V​​ U​​ , exceeds ​​(1 − q)​​ n​​ (a 
lower bound to his payoff). Because ​​V​​ U​​ is decreasing in ​q​  and (32) and (25) only differ by a term (​​(1 − q)​​ n​​ replac-
ing ​​V​​ U​ (q)​ in the winner-only observable case), the result follows. 
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Since ​d​F​q​​ (β)/​F​q​​ (β )  =  d ln ​F​q​​ (β ) ,​ we obtain, using ​​F​q​​ (​ u ¯ ​)  =  1 − q​ ,

(34)	​​  ​u ̅ ​ − b _____ ​u ̅ ​ − ​u 
̅
 ​ ​ ​​(​ 

​F​q​​ (b)
 _ 

1 − q
 ​)​​​ 

n

​  =  1 + δ ln ​​(​ 
​F​q​​ (b)

 _ 
1 − q

 ​)​​​ 

n

​ .​

Equation (34) determines ​​F​q​​​. A closed-form solution is given in terms of the (branch 
−1 of the) Lambert function ​​W​−1​​​ , i.e.,

	​​ F​q​​ (b )  =  (1 − q)​​(− ​ 
δ(​u ̅ ​ − ​ u ¯ ​) ________ 

​u ̅ ​ − b
 ​  ​W​−1​​​(− ​ 

​e​​ −1/δ​ (​u ̅ ​ − b)  ___________ δ(​u ̅ ​ − ​u 
̅
 ​) ​ )​)​​​ 

1/n

​,​

and the largest bid is ​​​ 
_

 b ​​q​​  = ​ u ̅ ​ − ​(1 − q)​​ n​ (1 − δn ln (1 − q )) (​u ̅ ​ − ​u 
̅
 ​).​ Note that this 

initial bid distribution is the same as in the unobservable case (see (19))! In fact, the 
continuation payoffs from winning and from losing are identical as well. In particu-
lar, the continuation payoff from winning is independent of the level of the winning 
bid in the winner-observable environment, as in the unobservable environment. It 
also means that a high-valuation bidder makes the same overall payment for win-
ning in all periods by submitting the highest bid in the bidding support in all periods. 
Note also that bidding supports coincide for later periods. Thus, his payoff, and 
given that the equilibrium is efficient, the revenues are the same in the separating 
equilibria across both information environments. The similarities in the payoffs (and 
the strategies) in the winner-only observable bid and the unobservable bid envi-
ronment can be traced back to the similarities in the players’ information. In either 
information environment, the winning seller does not know whether his competitors 
have low or high valuations, and he does not know their past bids either. The losing 
bidders in either information environment know that they face a high-value bidder. 
In addition, in the winner-only observable environment, they know the winner’s past 
bids. In either game form, the losing bidders have the same opportunities, namely to 
win once against the winning bidder.

In fact, a stronger equivalence holds: the unconditional distribution of bids is the 
same in the unobservable case as in the separating equilibrium of the winner-only 
observable case.16 We should, however, emphasize that the equilibrium play across 

16 This follows by computation. The unconditional distribution in the winner-only observable case in a given 
period is a convolution over those distributions in earlier periods, as earlier bids affect beliefs. Details are available 
upon request. 

0 1

Separating equilibria

Pooling (and semi-pooling) 
equilibria

qw q

Figure 3. Markov Equilibria in the Winner-Only Observable Case, as a Function of q
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the two environments is quite distinct. In the unobservable environment, the bidders 
randomize only initially and then pursue a deterministic policy as a function of their 
initial randomized choice, whereas in the winner-only observable environment bid-
ders keep on randomizing in all periods, until all uncertainty is resolved.

Note that the separating equilibrium exists for all parameters. If the other 
high-valuation bidders separate, it is strictly better for a high-valuation bidder to 
bid ​​​u 

̅
 ​​+​​​ rather than ​​u 

̅
 ​​. In either case, the bidder only wins if all the opponents have 

low valuation. If they do not, both bids are equivalent. If they all do, then bidding ​​​u 
̅
 ​​+​​​ 

is strictly better than ​​u 
̅
 ​​ ; for by making the former bid, the bidder learns that all other 

bidders have low valuation, and so he always wins at the price ​​​u 
̅
 ​​+​​​.

If the prior belief is high enough for pooling equilibria to exist, semi-pooling 
equilibria also exist, in which high-valuation bidders assign positive probability to ​​
u 
̅
 ​​ , but also continuously randomize over some range ​(​u 

̅
 ​, ​​ b ̅ ​​q​​ )​. The online Appendix 

provides an exhaustive analysis of such equilibria.17 Such equilibria must converge 
(in finite time or not) to complete pooling behavior, or, of course resolve due to the 
randomization into a separating equilibrium, as soon as one of the bidders bids more 
than ​​u _​​. Thus if no separation has occurred, the belief must be above the threshold 
ensuring existence of pooling equilibria (characterized by (32)), and their revenue 
is bounded away from the revenue of the separating equilibrium. The next theorem 
summarizes these findings, as does Figure 3.

THEOREM 4: A (Markov) equilibrium always exists. Furthermore:

	 (i)	 A unique separating equilibrium always exists. If ​q  < ​ q​​ w​​ , this is the unique 
equilibrium;

	 (ii)	 If ​q  > ​ q​​ w​​ , a (unique) pooling equilibrium exists, as well as semi-pooling 
equilibria.

The informational environment of the winner-only observable bids leads to qual-
itative characteristics of the equilibria between the unobservable and the observable 
environment. As in the unobservable environment, a separating equilibrium is guar-
anteed to exist for all values of ​q, δ,​ and ​n​. But as in the observable environment, a 
pooling equilibrium also exists for every prior probability ​q​ as long as ​δ​ and ​n​ are 
sufficiently large.

To conclude, the revenue comparison between observable bids and winner-only 
observable bids is not clear-cut, shrouded in part by the multiplicity of equilib-
ria. There is a sense in which winner-only observable auctions make bidders more 
aggressive. To wit, the threshold above which pooling exists is higher (​​q​​ w​  > ​​ q ̅ ​​​ o​​), 
and a separating equilibrium always exists, unlike in the observable case. In addi-
tion, the comparison is unambiguous when information is one-sided. But this is 

17 For each prior ​q  ≥ ​ q​​ w​​ , countably many semi-pooling equilibria exist. Exactly one such equilibrium involves 
an infinite sequence of distinct posterior beliefs (conditional on the highest bid being ​​u 

̅
 ​​), which converges to ​​q​​ w​​; 

all other semi-pooling equilibria specify switching at an arbitrary time from this sequence to the belief ​​q​​ w​​ at which 
pooling ensues. The later the switch, the lower the revenue. 
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precisely what mitigates aggressive bidding in the winner-only observable case: 
true, bidding aggressively and failing to win does not lead to costly information 
revelation in that case, but if revelation does occur, more aggressive bidding in the 
one-sided case ensues, which holds up aggressive bidding in the first place. The 
success of the winner-only observable format in raising revenue, and so depressing 
payoffs in the one-sided case backfires, putting a damper on bidding when informa-
tion is still symmetric.

V.  Discussion and Conclusion

The objective of the present paper was to investigate the role of disclosure poli-
cies in the context of repeated auctions and procurements. We compared the minimal 
disclosure policy, namely unobservable bids, with the maximal disclosure policy, 
namely observable bids. We also considered an intermediate form of disclosure pol-
icy, in which only the winning bid was disclosed. We now discuss the robustness of 
the analysis (and its result) with respect to a number of natural generalization and 
variations of the stylized model.

Finite versus Infinite Horizon.—So far, we have analyzed the bidding behavior 
for all disclosure environments in an infinite horizon setting. We thus briefly discuss 
how the equilibrium analysis would be affected by imposing a finite horizon (details 
in a Supplementary Appendix available from the authors). The resulting comparison 
is also informative as much of the literature discussed in the introduction obtains 
results for the special case of a finite horizon with two periods.

With unobservable bids, we derived the Markov equilibrium in the infinite hori-
zon model. The Markov equilibrium for a finite horizon (with or without discount-
ing) is in fact simply the truncated version of the infinite horizon model.

By contrast, the restriction to a finite horizon does impact the bidding behavior 
with observable bids. It remains true that it is difficult to obtain a separating equilib-
rium, and the critical threshold ​​​ q 

¯
 ​​​ o​​ remains valid, but importantly, a (complete) pool-

ing equilibrium as in Theorem 3 now fails to exist for any finite horizon. To see this, 
suppose in the penultimate period both types were to bid ​​u 

̅
 ​​. Then the beliefs would 

not be updated at all, remaining at the common prior ​q​. Now, if a high-value bidder 
were to deviate to bid ​​​u 

̅
 ​​+​​​ , then he would win the object for sure while beliefs about 

all other bidders would remain at the ex ante prior ​q​. As we have already shown, 
a static auction with such one-sided information involves the same unconditional 
distribution of bids and same expected payoff as the symmetric information one. So 
deviating is unambiguously a better strategy and therefore implies the impossibility 
of pooling. Thus, a finite horizon model would fail to capture pooling equilibria and 
thus to recognize this benefit from unobservable bids.18

18 We have not analyzed the finite horizon (undiscounted) game with observable bids exhaustively. With two 
periods, if q < 1/3, separation occurs in the first; if q > 1/3, the high-value bidder randomizes between ​​u _​​ and a 
higher bid. With three periods, one can show that, if q < 1/3, separation occurs immediately. If q is between 1/3 
and a higher threshold (~ 56), semi-pooling is followed by separation, in case both bids are equal to ​​u _​​ in the first; 
while above the higher threshold, semi-pooling is followed by semi-pooling (in case the first bids equal ​​u _​​). With T 
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With observable bids by the winner, the impossibility to sustain pooling equilib-
ria remains, and thus, Proposition 5 ceases to hold. In fact, even the semi-pooling 
equilibria cease to exist when only the winning bid is observable. The difference 
to the observable bid environment is that now the losers’ bids are private, and thus, 
bidding ​​​u 

̅
 ​​+​​​ does not risk to reveal one’s type when another high-type bidder made 

the winning bid. This further undermines the ability of bidders to disguise their val-
uation in a semi-pooling equilibrium. Hence, the only remaining equilibrium is the 
separating equilibrium.

The Role for Reserve Prices.—We have argued that the disclosure environment 
impacts the revenue of the seller and by consequence the net utility of the bidder in 
an important way. But information is only one of many instruments available to the 
seller to increase his revenue, and thus, we might wonder whether a more traditional 
instrument such as a reserve price would not be a more powerful instrument than the 
disclosure policy. We therefore briefly analyze how the use of reserve prices would 
impact the analysis of the disclosure regimes. For the purpose of the discussion here, 
we shall restrict our attention to optimally chosen stationary reserve prices and thus 
will not consider reserve prices that can change over time.

In a static setting, we know that the revenue of a standard first-price auction is 
generally not optimal and can be increased by suitably chosen reserve prices. In the 
current binary setting only, a reserve price equal to the high valuation can possibly 
increase the revenue. Indeed, with a high reserve price, the seller can extract all the 
surplus from the bidders but faces the risk that none of them meets the reserve price. 
By comparing the revenue of the auction format with and without a reserve price, 
we can easily establish that it is optimal to impose a high reserve price if and only if

(35)	​​ q​​ r​  ≥ ​   ​ u ¯ ​ _____________  (n + 1)​ 
_

 u ​ − n​u 
̅
 ​
 ​ .​

After all, we established in Section ID that the revenue without a reserve price equals 
the revenue of the second-price auction. Now, the above inequality is more likely to 
get satisfied when (i) ​q​ is higher, (ii) ​n​ is larger, and (iii) the ratio ​​u _​​ − ​​ 

_
 u ​​ is smaller.

With this benchmark from the static setting, we can now understand the impact of 
the reserve prices in the dynamic setting. We shall restrict our attention to the limit-
ing case as ​δ  →  1​ to be able to directly use our previous results. By Corollary 2, we 
then know that with unobservable bids, the expected revenue tends to the revenue of 
the static auction. By contrast, with observable bids, we know from Theorem 3 that 
a pooling equilibrium exists, and from condition (26), we know that as ​δ  →  1​ , the 
critical threshold converges to

(36)	​​ ​q ̅ ​​​ o​  =  1 − ​(n + 1)​​ −1/n​.​

periods, it remains straightforward to show that, for q < 1/3, separation occurs immediately. More generally, we 
conjecture that, given T, there is a partition of the unit interval in T subintervals such that separation occurs in the 
t < T periods if the prior lies in the t − th lowest interval (the lowest interval being [0, 1/3]).
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Moreover, Proposition 5 establishes for winner-only observable bids that as ​δ  →  1​ , 
the threshold for the pooling equilibrium ​​q​​ w​​ converges to ​​​q ̅ ​​​ o​​ as well; see (33). Thus, 
we can conclude that for all ​q​, such that ​​​q ̅ ​​​ o​  <  q  < ​ q​​ r​​ , the optimal policy would 
be to not impose reserve prices and to not disclose any bidding information. After 
all, the flow revenue in any pooling equilibrium is limited to the low valuation ​​u 

̅
 ​​.  

By contrast, in the unobservable bid environment, it is the expected value of the 
second-order statistic, which is strictly larger than ​​u 

̅
 ​​. A comparison between the 

two critical thresholds ​​q​​ r​​ and ​​​q ̅ ​​​ o​​ establishes that there is always a range of values  
​[​u 

̅
 ​, ​ 
_

 u ​], ​such that the imposition of high reserve price ​​ 
_

 u ​​ is not optimal for a range of 
prior probabilities ​q​.

PROPOSITION 6 (Irrelevance of Reserve Prices): For every ​n  >  1​, there exists a 
sufficiently large ratio ​​u 

̅
 ​ /​ 
_

 u ​  <  1​, such that ​​​q ̅ ​​​ o​  < ​ q​​ r​​.

PROOF OF PROPOSITION 6:
We compare the two thresholds ​​q​​ r​​ and ​​​q ̅ ​​​ o​​ given by (35) and (36). We observe that ​​

q​​ r​​ is increasing in ​​u 
̅
 ​​ and ​​​q ̅ ​​​ o​​ is independent of ​​u 

̅
 ​​. We solve for

	​ 1 − ​(n + 1)​​ −1/n​  = ​   ​u 
̅
 ​ _____________  (n + 1)​ 
_

 u ​ − n​u 
̅
 ​
 ​​

or

	​​  ​u 
̅
 ​ __ ​u ̅ ​
 ​  = ​ 

​(n + 1)​​(​​(n + 1)​​​ ​ 
1 _ n ​​ − 1)​

   _____________________   
​(n + 1)​​(​​(n + 1)​​​ ​ 

1 _ n ​​ − 1)​ + 1
 ​ ,​

and the right-hand side is evidently smaller than ​1​ for all ​n  >  1​.
The ratio of ​​u 

̅
 ​​ and ​​ 

_
 u ​​ appears as it represents the relative loss the seller incurs by 

relying on a competitive bid from the low-valuation bidder ​​u 
̅
 ​​ rather than imposing a 

high reserve price equal to the high valuation ​​ 
_

 u ​​. Clearly, for ​​u 
̅
 ​  =  0​ , a high reserve 

price is always optimal, but eventually, as the competitive distance between the low 
valuation and high valuation decreases, a high reserve price forgoes too much reve-
nue from the low-valuation bidders.

We conclude by briefly commenting on the role of some of the restrictions of our 
model.

Private versus Common Values.—Throughout, we have assumed that bidders have 
private values. If values had a common element, we suspect that some information 
disclosure might be desirable. Recall that, as in the seminal work of Milgrom and 
Weber (1982) on static auctions, revenue increases in the amount of information that 
is being disclosed. The same should be true in sequential auctions. As information 
about other bidders’ bids are disclosed, information percolates that might help bid-
ders refine their estimate of the value of the good, and this might mitigate the detri-
mental effect of public information that has been discussed in this paper. Of course, 
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the latter effect might completely inhibit learning: if the equilibrium is pooling, no 
information about other bidders’ information will ever be transmitted, and learning 
cannot take place.

Persistent versus Changing Values.—Throughout, we have assumed that values 
never change. This is an obvious simplification. Its technical convenience is easy 
to grasp: if values could change over time, in the unobservable case, a loser who 
eventually wins could no longer be sure that his opponent has a high-valuation, 
and thus, that his opponent knows that he has a high-valuation as well. Perhaps 
his eventual win came about because the previous winner’s valuation dropped.  
The impossibility of a pooling equilibrium remains valid, however, as high-valuation 
bidders have the same incentive to break ties in their favor. The impact of changing 
values on bidding dynamics is intuitively ambiguous. On one hand, it makes the 
winner less cautious about lowering his bid because losing does not imply that the 
continuation payoff will be zero forever (values will not remain persistently high). 
On the other hand, the probability that the losers have a low valuation is bounded 
below (as their value might change from one period to the next), and this dampens 
the winner’s incentive to lower his bid.

Binary Values.—We assume throughout that each bidder has either a low or a high 
value for the object. The binary structure of the possible valuations was particularly 
helpful in the construction of the equilibrium in the case of unobservable bids (and 
it was necessary to get unique predictions in the other versions). More precisely, it 
allowed us to conclude that the bids would jump immediately to the high value after 
the past winning bidder lost for the first time and would thereafter stay constant at the 
high value. With a finite number or a continuum of values, the analysis would become 
more intricate. With a finite number of values the resolution of uncertainty among two 
competing bidders with distinct values may require more than one period in which the 
identity of the winner switches. With two values, any winning bid above the low value 
identifies a high-value bidder. With more than one value above the lowest value, the 
separation between adjacent values is unlikely to occur in a single event, as it would 
open the possibility to delay an aggressive bid by a finite number of periods to mimic 
a lower value type, and hence, separation will be slower and with some cost in terms of 
the efficiency of the equilibrium allocation. As we already know from the two-period 
analysis of Landsberger et al. (2001), there is no hope in finding a closed-form expres-
sion for the strategies if values are drawn from an interval. Furthermore, because from 
one period to the next the winner decreases his bid by some finite amount, there would 
be no common knowledge of valuations once bid trajectories cross. We believe that 
ours is the first paper to explicitly solve for a Markov equilibrium in a game in which 
higher-order beliefs matter, and we hope that it will trigger further developments that 
will ultimately allow to study such richer environments.

We should emphasize that we believe that the thrust of the argument, the 
impossibility of a pooling equilibrium with unobservable bids, and the possibility 
of a pooling bid with observable bids would remain to hold with finitely many or 
a continuum of values. After all, if we take ​​u 

̅
 ​​ and ​​ 

_
 u ​​ as the lowest and the highest 

valuations (among a continuum), then a pooling equilibrium leads to a flow payoff ​​
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(​ 
_

 u ​ − ​u 
̅
 ​)​/​(n + 1)​​ while the flow payoff from the efficient separating equilibrium 

is ​​​(1 − q)​​​ n​/​(​ _ u ​ − ​u 
̅
 ​)​​ , all evaluated from the point of view of the bidder with the 

highest valuations. Now, as Proposition 2 established for binary values, for every ​q​ , 
there exists ​n​ such that the separating equilibrium ceases to exist, while the pooling 
equilibrium survives.

Appendix

We generalize here the analysis given in the text to the case with ​n + 1​ bidders. 
The loser’s bid distribution in period ​t  ≥  1​ is denoted ​​F​t​​​. The distribution of the 
highest losing bid is given by ​​(​F​t​​ )​​ n​​ , and most of the analysis from the winner’s point 
of view is identical to the case ​n  =  1​.

PROOF OF LEMMA 1:
The high-valuation winner’s value function must satisfy the optimality equation

	​​ V​t​​ (b)  = ​ max​ 
β
​  ​​{​ 

​F​t​​ ​(β)​​ n​
 _ 

​F​t−1​​ ​(b)​​ n​ ​ ((1 − δ) (​u ̅ ​ − β)  + δ ​V​t+1​​ (β))}​,​

where ​b​ is the bid the winner made in period ​t − 1​ (as before, we attempt to solve 
for an equilibrium in which the equilibrium bid is a summary statistic for the 
entire information of a player). Define ​​Y​t​​ (b) ≔ ​F​t−1​​ ​(b)​​ n​ ​V​t​​ (b)​ for all ​t ≥ 1​. Then 
​​Y​t​​ (b) = ​max​β​​​{​F​t​​ ​(β)​​ n​ (1 − δ ) (​u ̅ ​ − β )  + δ ​Y​t+1​​ (β)}​​ , from which it is clear that, 
since the right-hand side is independent of ​b​ , the winner is indifferent over all bids 
in the relevant interval, and ​​Y​t​​​ is independent of ​b​. It follows that, for all ​t  ≥  1​ , 

and for some constant ​​φ​t​​  ≥  0​ , ​​F​t​​ ​(b)​​ n​  = ​  
​φ​t​​ _ 

​u ̅ ​ − b
 ​​. Since our purpose is to con-

struct an equilibrium in which only the low-type bidder bids ​​u 
̅
 ​​ , we further have 

​​(1 − q)​​ n​  = ​ F​t​​ ​(​u 
̅
 ​)​​ n​  = ​  

​φ​t​​ _____ ​u ̅ ​ − ​u 
̅
 ​ ​​ , from which we can solve for the constant ​​φ​t​​​ , so that

(37)	​​ F​t​​ (b)  =  (1 − q) ​​(​ ​u ̅ ​ − ​u 
̅
 ​ _____ 

​u ̅ ​ − b
 ​)​​​ 

1/n

​ .​

This distribution being independent of ​t​ , the loser makes a bid that is independent 
of ​t,  ∀ t  ≥  1​. ∎

PROOF OF LEMMA 2:
Let us define ​​X​t​​ (b)​ as the continuation payoff of a player with a high valuation ​​u ̅ ​ ​ 

who lost in the first period and always bids ​b​. Then

	​​ X​t​​​(b) = ​​max​ 
β
​ ​​  ​​{Pr[i wins in period t with β](1 − δ)(​u ̅ ​ − β) + δ​X​t+1​​(β)}​​.19

19 As in the case of two players, this is an abuse of notation because the continuation payoff is a function of the 
latest bid β only if this latest bid is the most informative one; however, this is not necessarily the case if bidder i 
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We do not condition on player ​i​ having always lost before, or the winner having 
always won (i.e., it could be that the game is “over” and ​i​ might not know about it). 
The choice only matters if those two events obtain, but so maximizing the condi-
tional or unconditional payoff is equivalent. Let

	​​ p​t​​ (b, β) ≔  Pr [ i wins in period t with β and bid b in all previous periods ] ,​

given that he always bid ​b​ before and lost in the initial period. First-order conditions 
give

	​​  d _ 
dβ ​ ​p​t​​ (b, β ) (​u ̅ ​ − β )  − ​p​t​​ (b, β )  + ​  δ _ 

1 − δ ​ ​X​ t+1​ ′ ​  (β)  =  0,​

while the envelope theorem states that

(38)	​​ 
​X​ t​ ′ ​ (b) _____ 
1 − δ ​  = ​  d _ 

db
 ​ ​p​t​​ (b, β ) (​u ̅ ​ − β ).​

Combining gives, for ​t  ≥  2​ (remember that ​b  =  β​ then),

(39)	​​ (​ d _ 
dβ ​ ​p​t​​ (b, b )  + δ ​ d _ 

db
 ​ ​p​t+1​​ (b, b))​(​u ̅ ​ − b )  − ​p​t​​ (b, b )   =  0.​

We must now solve for the probabilities ​​p​t​​ (b, β)​. Fix some player ​i​ who lost in 
the initial period with a bid ​b​. Let ​​G​t​​​ denote the unconditional bid distribution of 
the winner in period ​t​ (we do not condition on the fact that player ​i​ lost in the 
initial period with a particular bid ​b​). Also, given ​t​ , define the function ​β​ by 
​​G​t​​ (b)  = ​ G​t−1​​ (β(b))​. That is, if the initial winner bids ​b​ in period ​t​ , he must have 
bid ​β(b)​ in the previous period. Suppose now that player ​i​ bid ​b​ in all periods up to ​
t − 1​. What are his odds of winning for the first time in ​t​ with a bid ​b − ε​ , for small ​
ε  >  0​? First, the bid ​b − ε​ must be the highest bid among the losing bids, which 
occurs with probability ​F ​(b)​​ n−1​​. Second, the winner’s previous bid must have been 
in the interval ​[b, β(b − ε)]​: if it were lower, ​i​ would have won before; if it were 
higher, ​i​ would not win in period ​t​. So the probability he wins is

(40)  ​F​(b − ε)​​ n−1​(​G​t−1​​(β(b − ε)) − ​G​t−1​​(b)) = F​(b − ε)​​ n−1​(​G​t​​(b − ε) − ​G​t−1​​(b)).​

Let us now consider instead the case in which he increases his bid to ​b + ε​ in period ​
t​. What is the probability that he then wins in that period? The probability is then

	​ F ​(b + ε)​​ n−1​ ​∫ 
b+ε​ 
β(b+ε)

​​ ​g​t−1​​ (x) dx + ​∫ 
b
​ 
b+ε

​​ F ​(x)​​ n−1​ ​g​t−1​​ (x) dx.​

does not submit a bid strictly lower than the lowest bid for which he knows he will lose for sure, and this is without 
loss of generality. Note further that, for any higher bid β, his optimization problem is as if he had bid β throughout.
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Indeed, either the winner bid ​x​ in the range ​[b, b + ε]​ in period ​t − 1​ , and for ​i​ to 
win in ​t​ , he must have won in ​t − 1​ (i.e., the others bid below ​x​ , which implies that 
they are also outbid by ​i​ in ​t​), or he bid ​x​ in the range ​[b + ε, β(b + ε)]​ , and all that 
is needed then is that the other initial losers bid no more than ​b + ε​. This probability 
can be rewritten as

(41)	​ F ​(b + ε)​​ n−1​ ( ​G​t​​ (b + ε)  − ​G​t−1​​ (b + ε)) + ​∫ 
b
​ 
b+ε

​​ F ​(x)​​ n−1​ ​g​t−1​​ (x) dx.​

As expected, these probabilities and their derivatives with respect to ​ε​ coincide for ​
ε  =  0​ , so

(42)	​​ p​t​​ (b, b)  =  F ​(b)​​ n−1​ ( ​G​t​​ (b) − ​G​t−1​​ (b)), ​

(43)	   ​​ d _ 
dβ ​ ​p​t​​ (b, b) = F ​(b)​​ n−1​ ​g​t​​ (b) + (n − 1) f (b)F ​(b)​​ n−2​ (​G​t​​ (b) − ​G​t−1​​ (b)).​

We also get, from (40) or (41),

(44)	​​  d _ 
db

 ​ ​p​t​​ (b, b)  =  − F ​(b)​​ n−1​ ​g​t−1​​ (b).​

We have ​​(​ d _ 
dβ ​ ​p​t​​ (b, b) + δ ​ d _ 

db
 ​ ​p​t+1​​ (b, b))​(​u ̅ ​ − b) − ​p​t​​ (b, b)  =  0​ , and plugging in 

the value for ​​p​t​​​ and its derivatives from (42)–(44) gives

​​(F ​(b)​​ n−1​ ​g​t​​ (b) + (n − 1) f (b) F ​(b)​​ n−2​ (​G​t​​ (b) − ​G​t−1​​ (b)) − δF ​(b)​​ n−1​ ​g​t​​ (b))​(​u ̅ ​ − b) 

−  F ​(b)​​ n−1​ (​G​t​​ (b) − ​G​t−1​​ (b))  =  0.​

We can then eliminate the higher powers of ​F​ and obtain

(45) ​​(​(1 − δ)​ ​g​t​​ (b) + (n − 1) ​ f (b)
 _ 

F(b) ​ (​G​t​​ (b) − ​G​t−1​​ (b)))​(​u ̅ ​ − b) − (​G​t​​ (b) − ​G​t−1​​ (b)) = 0, ​

a difference-differential equation to be solved for ​​G​t​​​ given ​​G​t−1​​​. We further elim-

inate ​f ​(b)​/F​(b)​​ by observing that from (37), ​​ f (b) ____ 
F(b) ​  = ​  1 _ n ​ ​  1 _____ ​ 

_
 u ​ − b ​​. Plugging into (45),

(46)  ​​(​(1 − δ)​ ​g​t​​ (b) + ​ n − 1 _ n  ​ ​  1 _ 
​ 
_

 u ​ − b
 ​ (​G​t​​(b) − ​G​t−1​​ (b)))​(​u ̅ ​ − b) − (​G​t​​(b) − ​G​t−1​​ (b)) = 0, ​

or

(47)	​​ (​(1 − δ)​ ​g​t​​ (b)​(​ 
_

 u ​ − b)​ − ​ 1 _ n ​ ( ​G​t​​ (b) − ​G​t−1​​ (b)))​  =  0.​
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The derivation of ​​G​1​​​ follows then exactly the same steps as in the text, giving

	​ (1 − δ) ​g​1​​ (b) (​u ̅ ​ − b)  = ​  1 _ n ​​(​G​1​​ (b) − ​​(​ 
γ
 _ 

​u ̅ ​ − b
 ​)​​​ 

​ 1 _ n ​
​)​,​

where ​γ ≔ ​ (1 − q)​​ n​ (​u ̅ ​ − ​u 
̅
 ​)​ , ​​g​1​​​ is the derivative of ​​G​1​​​, and ​​G​1​​ (​u ̅ ​ − γ)  =  1​. For ​

t  ≥  2​ ,

	​ (1 − δ) ​g​t​​ (b) (​u ̅ ​ − b)  = ​  1 _ n ​​(​G​t​​ (b) − ​G​t−1​​ (b))​,​

with ​​G​t​​ (​u ̅ ​ − γ)  =  1​. Set ​y ≔ (​u ̅ ​ − b)/γ, ​H​t​​ (y) ≔ ​G​t​​ (b)​ , so ​(1 − δ) ny​h​t​​ (y) + ​
H​t​​ (y) − ​H​t−1​​ (y)  =  0, t  ≥  2​ , and ​(1 − δ) ny​h​1​​ (y) + ​H​1​​ (y) − ​y​​ −​ 1 _ n ​​  =  0​ , where ​​
H​t​​ (1)  =  1, t  ≥  1​. The solution is

(48)	​​ H​t​​ (y)  = ​ 
​y​​ −1/n​

 _ 
​δ​​ t​

 ​  + ​y​​ −1/(1−δ)n​ ​ ∑ 
τ  =0

​ 
t

  ​​ ​ 1 − ​δ​​ τ−t​ _ τ !
 ​ ​​ (​ 

ln y
 _ (1 − δ) n ​)​​​ 

τ

​, ​

that is, in terms of the distribution ​​G​t​​​ ,

​​G​t​​ (b) = ​ 1 _ 
​δ​​ t​

 ​ (1 − q) ​​(​ ​u ̅ ​ − ​u 
̅
 ​ _____ 

​u ̅ ​ − b
 ​)​​​ 

​ 1 _ n ​
​ 

	 + ​​[(1 − q) ​​(​ ​u ̅ ​ − ​u 
̅
 ​ _____ 

​u ̅ ​ − b
 ​)​​​ 

​ 1 _ n ​
​]​​​ 

​  1 _ 
1−δ ​

​ ​ ∑ 
τ  =0

​ 
t

  ​​ ​ 1 − ​δ​​ τ−t​ _ τ !
 ​ ​​ (ln ​​((1 − q) ​​(​ ​u ̅ ​ − ​u 

̅
 ​ _____ 

​u ̅ ​ − b
 ​)​​​ 

​ 1 _ n ​
​)​​​ 

−​  1 _ 
1−δ ​

​)​​​ 

τ

​ ,​

which establishes the lemma. ∎

PROOF OF THEOREM 1:
It remains to determine ​​F​0​​​ , the initial bid distribution. The payoff of bidding ​b​ 

for a player with a high valuation is given by ​​F​0​​ ​(b)​​ n​ (​u ̅ ​ − b) + δ ​Y​1​​ (b)/(1 − δ) + 
δ ​X​1​​ (b)/(1 − δ)​ , where ​​Y​1​​ (b)​ is the (unconditional) continuation payoff after 
winning with an initial bid of ​b​ , evaluated from the second period onward, and ​​
X​1​​ (b)​ is the (unconditional) continuation payoff from losing after an initial bid of ​
b​ , evaluated from the second period onward. As in the case ​n = 1​ , ​​Y​1​​ (b)/(1 − δ) 
= ​(1 − q)​​ n​ (​u ̅ ​ − ​u 

̅
 ​)​ is a constant. Further, from the envelope theorem,

	​​ X​ 1​ ′ ​ (b)/(1 − δ)  = ​  d _ 
db

 ​ ​p​1​​ (b, β) (​u ̅ ​ − β)  =  − n ​F​0​​ ​(b)​​ n−1​ ​f​0​​ (b) (​u ̅ ​ − β),​

where ​​f​0​​​ is the density of the distribution ​​F​0​​​. From ​​F​0​​ (b)  = ​ F​1​​ (β ) 
=  (1 − q) ​​(​ ​u ̅ ​ − ​u 

̅
 ​ ____ 

​u ̅ ​ − β ​)​​​ 
n
​​ , we can solve for ​​u ̅ ​ − β​ in terms of ​​F​0​​​. Plugging this into the 

previous formula, we get

	​​ X​ 1​ ′ ​ (b)/(1 − δ)  =  − n ​ 
​f​0​​ (b)

 _ 
​F​0​​ (b) ​ ​(1 − q)​​ n​ (​u ̅ ​ − ​u 

̅
 ​ ).​

Integrating then yields ​​X​1​​ (b)/(1 − δ)  =  − n ​(1 − q)​​ n​ (​u ̅ ​ − ​u 
̅
 ​ ) ln ​F​0​​ (b)  + ​C​0​​​ , for 

some constant ​​C​0​​​. Because the payoff of bidding ​b​ must be independent of ​b​ over 
the support, we thus obtain that (substituting for ​​X​1​​​ and ​​Y​1​​​)
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(49)	​​ F​0​​ ​(b)​​ n​ (​u ̅ ​ − b) − nδ ​(1 − q)​​ n​ (​u ̅ ​ − ​ u ¯ ​) ln ​F​0​​ (b)  = ​ K​0​​, ​

for some constant ​​K​0​​​ that is independent of ​b​. By using the fact that ​​F​0​​ (​​u 
̅
 ​​+​​) = 1 − q​ , 

we get ​​K​0​​​ by plugging ​b = ​​u 
̅
 ​​+​​​ , and so ​​K​0​​ = (​u ̅ ​ − ​u 

̅
 ​) ​(1 − q)​​ n​ (1 − nδ ln (1 − q))​. By 

plugging ​b  = ​  b ̅ ​​ , where ​​ b ̅ ​​ denotes the upper extremity of the support of ​​F​0​​​ , we get 
that ​​ b ̅ ​  = ​ u ̅ ​ − ​K​0​​​. This and (49) uniquely characterize ​​F​0​​​ , and the closed-form solu-
tion follows from standard properties of the Lambert function.

So far, the equilibrium strategies have only been described on path. What happens 
after histories that are off the equilibrium path? Note first that there are no nontrivial 
deviations in the initial period: the high-valuation bidder has nothing to gain from 
bidding more than the highest bid in the support of his opponents’ distribution, nor 
from bidding less. For the latter, observe that bidding ​​​u 

̅
 ​​+​​​ strictly dominates bid-

ding ​​u 
̅
 ​​: high-valuation opponents bid more anyway; so it only makes a difference 

in the event that they all have low valuations, but in that event, it is better for him 
to break the tie in his favor. Therefore, we may focus on deviations after the initial 
period. Consider the winner first. Given that the losers make constant bids, the most 
informative bid ​b​ that the winner has made from period ​1​ to period ​t​ , given some 
arbitrary private history of his, is the lowest bid that he has made so far. Therefore, 
his beliefs are as if he had made this bid ​b​ in period ​t​ , and since the winner’s equi-
librium strategy is onto (i.e., for every bid ​b​ in the support, there is a history for 
which this bid ​b​ is the equilibrium bid in period ​t​), we may specify that he then 
behaves as if he had followed all along the equilibrium strategy that leads to bid ​b​ 
in period ​t​ (in fact, this specification is implied by the Markov assumption). The 
situation for a high-valuation loser ​i​ is similar: because the winner’s bids follow 
some decreasing trajectory, what matters is, given the private history of bidder ​i​ , 
what is the highest lower bound ​b​ that he assigns to the winner’s bid in period ​t​? 
Then bidder ​i​’s problem is identical to the one he would face had he followed the 
equilibrium strategy leading to a bid of ​b​ in period ​t​ , and the Markov assumption 
then implies that, whatever private history he actually has, he behaves from that 
period onward according to this equilibrium strategy (i.e., he submits the constant 
bid ​b​ from then on).

Finally, as the reader might recall, the optimality equations for the winner and 
loser implicitly assumed that bids were chosen in a range ensuring that this bid 
would be more informative than the previous ones. For the winner, this means that 
the new bid ​β​ is no higher than the previous bid ​b​ that he submitted; plainly, given 
that the losers make constant bids, higher bids are suboptimal (because any bid ​
β ≥ b​ is a winning bid anyway). For the loser, this means that the new bid ​β​ is not 
strictly lower than the maximal bid that ensures that, given the previous bid ​b​ he sub-
mitted and the winner’s equilibrium strategy, the loser is guaranteed to lose again. 
Plainly again, making any lower bid cannot constitute a profitable deviation. By 
construction then, there are no profitable deviations. This completes the description 
of the separating equilibrium. ∎
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