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Abstract

We study agents whose expected utility preferences are interdependent for informational or psycho-
logical reasons. We characterize when two types can be “strategically distinguished” in the sense that 
they are guaranteed to behave differently in some finite mechanism. We show that two types are strate-
gically distinguishable if and only if they have different hierarchies of interdependent preferences. The 
same characterization applies for rationalizability, equilibrium, and any interim solution concept in be-
tween. Our results generalize and unify results of Abreu and Matsushima (1992), who characterize strategic 
distinguishability on fixed finite type spaces, and Dekel et al. (2006, 2007), who characterize strategic dis-
tinguishability without interdependent preferences.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a setting where agents have preferences over lotteries on a finite set of outcomes, and 
their preferences are interdependent. Such interdependence may arise for informational reasons: 
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an agent believes that another agent’s preferences encode information that she thinks is relevant 
for her own payoffs. Or interdependence may exist for psychological reasons: an agent may be 
more altruistic to an agent who she thinks is more altruistic. Whatever the reason for the inter-
dependence, the standard approach to modeling such interdependence is to let each agent have 
a set of possible “types,” where each type has a belief about the other agents’ types, and each 
agent has a utility function specifying her utility over outcomes given each profile of agents’ 
types. A difficulty with this approach is that when types are described in this “implicit”, self-
referential, way, the operational content of such type descriptions is not clear. In particular, the 
distinction between informational and psychological interdependence may not have observable 
implications. In this paper, we provide a unified treatment of interdependent preferences and 
characterize when two such types can be “strategically distinguished” in the sense that they are 
guaranteed to behave differently in some finite mechanism.

To present our characterization of strategic distinguishability in the simplest possible envi-
ronment, we assume that each agent’s preference can be represented by expected utilities that 
depend on the other agents’ type profile. Furthermore, we assume (1) uniform ranking: for each 
agent, there are two outcomes, a “good outcome” and a “bad outcome,” such that he strictly 
prefers the former to the latter given any profile of the other agents’ types, and (2) bounded util-
ities: his utility indices lie in a prefixed bounded set when we normalize the utility of the “good 
outcome” to 1 and the “bad outcome” to 0. These assumptions are with loss of generality.1 But 
because of these assumptions, we can find finitely many “extreme” utility indices such that each 
utility index in the bounded set can be expressed as a convex combination of those extreme utility 
indices uniquely. Fixing and interpreting such extreme utility indices as his “private states,” we 
express any of his utility indices as a probability distribution over the private states, and interde-
pendent preferences by a type space based on the profile of these private states. Now each type 
has a hierarchy of beliefs about the private states à la Mertens and Zamir (1985). An agent’s hi-
erarchy of beliefs about the private states represents a “hierarchy of interdependent preferences”: 
a first order belief represents a preference over lotteries, which we call a “first order preference”; 
a second order belief represents a preference over (Anscombe–Aumann) acts over the opponents’ 
first order preferences, which we call a “second order preference”, and so on. With such a rep-
resentation, our main result states that two types are strategically distinguishable if and only if 
they have different hierarchies of beliefs about the private states and thus if they have different 
hierarchies of interdependent preferences. The same characterization applies for interim corre-
lated rationalizability, equilibrium, and any interim solution concept in between (Theorems 1
and 2).

The question of strategic distinguishability is due to Abreu and Matsushima (1992) (AM). 
AM characterize (full) virtual Bayesian implementability of social choice functions for a finite 
type space under the solution concept of iterated deletion of strictly dominated strategies (as well 
as equilibrium).2 A necessary condition is a “measurability” condition that, in the language of 

1 The uniform ranking condition is weaker than the economic condition maintained in much of the implementation 
literature, see Palfrey and Srivastava (1989) or Jackson (1991). The economic condition requires that a uniform strict 
ranking over two alternatives by agent i is reversed by the ranking of another agent j . It is called an economic condition 
because – in an exchange economy – giving one agent a strictly larger, and thus strictly preferred, bundle, requires giving 
another agent a smaller, less preferred bundle. Nonetheless, uniform ranking remains a strong assumption and we will 
discuss below how it can be relaxed.

2 A technical difference between AM and our paper is that we assume the outcome set to be finite whereas AM consider 
a more general environment and allow for all simple lotteries, i.e., lotteries with finite support, over an arbitrary, possibly 
infinite, outcome set.
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this paper, requires that the social choice function gives the same outcome to profiles of types 
with the same hierarchies of interdependent preferences. Lemma 2 of AM shows that two types 
in a given finite type space are strategically distinguishable if and only if they have different 
hierarchies of interdependent preferences. Subject to our uniform ranking assumption, we make 
two contributions relative to AM: first, we do not require a finite type space. Second, we show 
that for every fixed pair of distinct hierarchies of interdependent preferences, there is a single 
finite mechanism that will strategically distinguish types with those hierarchies of interdependent 
preferences across all type spaces, finite or infinite.

We use beliefs (and hierarchies of beliefs) over private states to represent preferences (and 
hierarchies of interdependent preferences) over outcomes, and – for our main results – mecha-
nisms depend only on actions. It is straightforward to extend our results to allow for additional 
external states: states that mechanisms can be made conditional on (Section 5.1). Now strategic 
distinguishability is characterized by hierarchies of beliefs over the private states as well as these 
external states. Dekel et al. (2006, 2007) (DFM) consider a setting where agents have beliefs 
and higher order beliefs about external states, and show that two types have disjoint sets of ra-
tionalizable actions in some finite game with external-state-dependent payoffs if and only if they 
have different hierarchies of beliefs about the external states (Dekel et al., 2006, Lemma 4) and 
Dekel et al. (2007, Proposition 1 and Corollary 2). Our results then reduce to DFM’s result when 
each agent has a single private state, i.e., when there is common certainty of preferences and – 
in particular – no interdependence of preferences (Section 5.2). Indeed, DFM’s result would go 
through even if we restricted attention to special classes of games such as zero sum games or 
common interest games.3

Thus our results can be seen as a unification and extension of the results of AM and DFM. 
Like DFM and unlike AM, we use an explicit description of types (independent of the type space 
they belong to) and can distinguish types on arbitrary type spaces. Like AM and unlike DFM, we 
distinguish between types with different hierarchies of interdependent preferences and not just 
types with different hierarchies of beliefs about external states, and thus we are more constrained 
in the set of strategic settings we can confront agents with.

Our main result requires an innovation in the proof strategy. In order to strategically distin-
guish two types with distinct hierarchies of interdependent preferences, we construct a finite 
mechanism in which agents are asked to report first finite orders of preferences. The mechanism 
randomizes over which “component” of the mechanism is used to select the outcome. For each 
agent i and each order n, there is an (i, n)th component of the mechanism designed so that agent 
i has an incentive to truthfully report her nth order preference if other agents have truthfully re-
ported their (n − 1)th and lower order preferences. A potential difficulty with this proof strategy 
is that agent i’s report of an nth order preference is an input not only into the (i, n)th component 
of the mechanism, but also into the (j, n + 1)th components, i.e., the components giving each 
other agent j an incentive to truthfully report his (n + 1)th and higher order preferences. AM 
dealt with this difficulty by exploiting finiteness, and having the probability of (j,m)th compo-
nents, for all m ≥ n + 1, occur with much smaller probability than component (i, n). DFM can 
choose payoffs so that, for each agent i, the (i, n)th components (for all n) giving agent i an 
incentive to report her preferences truthfully have no implications for other agents’ incentives. 
Neither trick is available in our setting, as we have arbitrary type spaces and agents’ preferences 
over outcomes may be arbitrarily linked. Instead, we develop a robust scoring rule that not only 

3 Gossner and Mertens (2001) suggested such a result for zero sum games.
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gives an agent an incentive to report her nth order preferences truthfully if others report their 
(n − 1)th and lower order preferences truthfully, but also gives the agent an incentive to report 
her nth order preferences approximately truthfully if others report their (n − 1)th and lower order 
preferences approximately truthfully. This enables us to design a mechanism where the error size 
at each of a finite number of orders can be simultaneously controlled.4

As an extension, we relax the restriction on preferences. Namely, we replace the uniform 
ranking assumption by the “no complete indifference” assumption, i.e., we assume that no type 
is completely indifferent over outcomes, but the “good outcome” and the “bad outcome” may 
depend on own types as well as the opponents’ types. Without the uniform ranking assumption, 
we may not be able to define private states (i.e., extremal preferences) in a meaningful way, not 
to mention a hierarchy of beliefs about the private states, as not all conditional preferences given 
type profiles may be represented by a convex combination of finitely many extreme utility in-
dices. But we can still make sense of a hierarchy of interdependent preferences as a sequence of 
preferences, the first term denoting a preference over lotteries (first order preference), the second 
term denoting a preference over acts over the opponents’ first order preferences (second order 
preference), and so on. With this terminology, we can extend the main result and show that un-
der the assumptions of no complete indifference and bounded utility, two types are strategically 
distinguishable if and only if they have different hierarchies of interdependent preferences. More-
over, the bounded utility assumption may also be relaxed to a certain “λ-continuity” assumption.5

Similarly to the previous formulation, this characterization holds for a suitably defined version 
of rationalizability, equilibrium, and any interim solution concept in between.

With this extension, our results imply Lemma 2 of AM but not vice versa, as any given finite 
type space satisfies the bounded utility assumption with a sufficiently large bound, but the mech-
anism constructed by AM can only distinguish a pair of distinct hierarchies of interdependent 
preferences if, in addition, we fix the finite type space to which they belong.

The paper is organized as follows. In Section 2, we discuss an example where each agent’s 
conditional preferences over lotteries, given the opponents’ type profiles, are parameterized by 
a single number in the interval [0,1], and use the example to motivate why it is hierarchies of 
beliefs about extreme points of possible preferences which characterize strategic distinguishabil-
ity, and point out why alternative ways of representing interdependent preferences – implicitly or 
explicitly considered in the literature – are either not “rich enough” (since they do not describe 
possible interdependent preference types of interest) or they are not “tight” (separating types 
that are not strategically distinguishable). In Section 3, we formally introduce our model under 
the uniform ranking and bounded utility assumptions. In Section 4, under these assumptions, 
we show that strategic distinguishability is characterized by hierarchies of interdependent pref-
erences represented by hierarchies of beliefs about private states. In Section 5, we discuss two 
extensions, how to incorporate external states, and how to replace the uniform ranking assump-
tion by the no complete indifference assumption. In Section 6, we discuss further connections to 
the literature.

4 A related issue arises in the work of Chambers and Lambert (2014), where the problem of eliciting dynamic (rather 
than interactive) beliefs is studied.

5 Without the bounded utility assumption or the λ-continuity assumption, strategic distinguishability would no longer 
be characterized by hierarchies of interdependent preferences (Proposition 5).
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2. Strategically distinguishable hierarchies

Before introducing our formal framework, we give a motivating example to illustrate which 
types can be strategically distinguished. Consider two “conditionally altruistic agents.”6 Each 
agent may care about the other’s private consumption, so that she is altruistic. But an agent may 
also be more altruistic if she thinks that the other agent is more altruistic, in which case she 
is conditionally altruistic. Higher order conditional altruism is also possible. More concretely, 
suppose that a prize is being allocated to either of the two agents. There is a probability ri ∈ [0,1]
such that agent i is indifferent between the other agent getting the object for sure and getting the 
object herself with probability ri . Thus, ri is an index of agent i’s altruism. Conditional altruism 
corresponds to having a higher altruism index when the other agent has a higher index.

Agent i’s interdependent preference type will have the following hierarchical description:7

1. A first order preference given by an altruism index ri describing the agent’s preference over 
lotteries over outcomes.

2. A second order preference over Anscombe–Aumann acts giving outcomes as functions of 
the other agent’s altruism index.

3. A third order preference over Anscombe–Aumann acts giving outcomes as functions of the 
other agent’s second order preference.

4. And so on....

As noted in the introduction, if the altruism index ri ∈ [0,1] is identified with probability 
distributions over states 0 and 1, then second order preferences correspond to probability distri-
butions over {0,1} × � ({0,1}), which is isomorphic to {0,1} × [0,1]; a third order preference 
corresponds to a probability distribution over {0,1} × � ({0,1} × [0,1]); and so on. Following 
standard results in the belief hierarchy literature, we can identify these hierarchies of interde-
pendent preferences with a set T ∗ consisting of the universal set of belief hierarchies, satisfying 
coherence and common certainty of coherence, about the extreme points of own altruism indices, 
where the set T ∗ satisfies the homeomorphism

T ∗ ∼= �({0,1} × T ∗).

Thus, each agent’s type is uniquely identified with a belief over {0, 1} × T ∗. The interpretation 
is that the marginal belief on T ∗ corresponds to the agent’s belief over the other agent’s type; 
and the conditional probability of state 1 given the other agent’s type corresponds to the agent’s 
expected value of the altruism index, conditional on the other agent’s type.

Our main result will be that T ∗ describes the interdependent preference hierarchies that can 
be strategically distinguished. To provide intuition for our main result, it is useful to discuss 
three alternative descriptions of interdependent preference hierarchies that have been (implicitly 
or explicitly) proposed in the literature. We show why each one of the descriptions is either not 
rich enough – in the sense that it does not include possible interdependent preference hierarchies 
– or is not tight, in the sense that it labels types differently even if they are not strategically 
distinguishable.

6 This discussion follows Levine (1998) and Gul and Pesendorfer (2016).
7 We will formalize the notion of interdependent preference hierarchies in Section 3.4 by means of beliefs and higher 

order beliefs over “private states” and in Section 5.3 more directly.
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First, we could say (as before) that a first order preference corresponds to an altruism index 
ri ∈ [0,1]. But then we could say that a second order preference is given by an agent’s altruism in-
dex, and a belief over the other agent’s altruism index, and so by an element of [0,1]×� ([0,1]). 
Iterating in this way, we would get a “private values (PV) universal belief space,” TPV , satisfying 
the homeomorphism

TPV ∼= [0,1] × �(TPV).

Thus, a type is identified with an altruism index and a belief over the other agent’s altruism 
index. The space TPV clearly allows for all first order preferences. But it does not allow second 
order preferences to depend on the other agent’s first order preference, and hence rules out the 
interdependence we are trying to capture. TPV is thus not rich enough, although it is tight in that 
every pair of distinct types is strategically distinguishable.

Second, we could identify types with belief hierarchies, satisfying coherence and common 
certainty of coherence, about both agents’ altruism indices. A first order preference would now 
be an element of � 

(
[0,1]2). A second order preference would be an element of �([0,1]2 ×

�([0,1]2)); and so on. Iterating in this way, we would get the “payoff (P) universal type space,” 
satisfying the homeomorphism

TP
∼= �

(
[0,1]2 × TP

)
.

Now a type is identified with a belief over both agents’ altruism indices and the type of the other 
agent. The space TP is rich enough to allow for all interdependent preferences we are interested 
in, but it is not tight as it labels types differently even if they are not strategically distinguishable. 
For example, it labels a type of agent i who is sure that his altruism index is 1/2 differently 
from another type having a 50/50 belief about whether his altruism index is 0 or 1. It also labels 
differently types of agent i who have various beliefs about agent j ’s altruism index rj , but all of 
whom are sure that j is sure that j is “truly selfish” (i.e., rj = 0), and j will never behave in an 
altruistic way. Note that what matters for agent i’s behavior in strategic settings is not what agent 
i believes about rj , but what agent i believes about agent j ’s belief about rj .

Third, we could identify types with beliefs and higher order beliefs about a large set of “payoff 
types” that describe interdependent preferences (without beliefs). An agent knows his own payoff 
type but may not know the other agent’s payoff type. Thus, suppose that we have a set � of 
possible payoff types for each agent and let r

(
ψ,ψ ′) ∈ [0,1] specify an agent’s altruism index 

when he has payoff type ψ and the other agent has payoff type ψ ′, so r : �2 → [0,1]. Now an 
agent’s first order preference will consist of a payoff type ψ . His second order preference will 
consist of a payoff type ψ and a belief over the other agent’s payoff type, and will thus be an 
element of � × � (�). And so on. Call the set of all such hierarchies the “interdependent payoff
(IP) universal belief space,” TIP; it will satisfy the homeomorphism

TIP ∼= � × �(TIP).

So a type now corresponds to a payoff type and a belief over the other agent’s type. Since we 
assumed that agents knew their own “payoff types,” this is simply the private values universal 
type space defined over � instead of [0,1] as we did for TPV or {0,1} as we did for T ∗. This 
modeling approach follows a standard practice in the literature of treating payoff interdependence 
and higher order beliefs separately, and is widely used in the mechanism design literature, either 
implicitly or explicitly. It is implicit in Dasgupta and Maskin (2000), who introduce “types” 
which determine players’ interdependent values and then consider ways of implementing the 
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efficient outcome that do not depend on beliefs. It is explicit in the work of two of us on robust 
mechanism design (Bergemann and Morris (2005, 2009a, 2012) for a collection of related work), 
where we assumed a space of possible “payoff types,” and allow all beliefs and higher order 
beliefs about those payoff types.

The payoff type spaces in Dasgupta and Maskin (2000) and Bergemann and Morris (2012)
are not intended to be “universal.” Gul and Pesendorfer (2016) constructed a universal type space 
of interdependent preferences, abstracting from any belief structure. In particular, they identify a 
maximal set of interdependent payoff types which captures all distinctions that can be expressed 
in a natural language. When they consider applications of their universal type space to incomplete 
information settings, they treat incomplete information separately and thus implicitly allow all 
beliefs and higher order beliefs over their universal payoff space.

Similarly to the space TP , the space TIP is rich enough to express all interdependent pref-
erences if the underlying payoff type space is large enough, but it is then not tight. An agent’s 
type in TIP specifies what his payoff parameter would be given the other agent’s payoff type 
that he attaches probability zero to. Thus, it contains information that the agent (subjectively) 
regards as counterfactual. While there might be purposes for which we want a language to 
express this information, as discussed in Gul and Pesendorfer (2016), such distinctions will 
not be strategically distinguishable in our sense. Concretely, suppose that there were two pay-
off types, an “unconditionally altruistic” type ψ and a “conditionally altruistic” type ψ ′ with 
r(ψ, ψ) = r(ψ, ψ ′) = r(ψ ′, ψ) = 1 and r(ψ ′, ψ ′) = 0, and compare (i) a type of an agent who 
prefers sharing with the other agent because he is conditionally altruistic and is sure that the other 
agent is unconditionally altruistic; and (ii) another type who prefers sharing with the other agent 
because he is unconditionally altruistic. These types will not be strategically distinguishable from 
each other, but will correspond to different types in TIP.

Before moving to our main model, let us consider two broader interpretations of the example. 
First, we could allow the altruism index to be in the interval [−B,B], with the interpretation 
that ri > 1 corresponds to a super-altruistic agent who prefers the other agent to get the object to 
getting it himself; and ri < 0 corresponds to a spiteful agent who would prefer that no one got 
the object to the other agent getting the object. This case is discussed in Section 3.2.

Second, we could allow the parameter ri ∈ [0,1] to have very different interpretations from 
conditional altruism. For example, suppose that there were three outcomes, bad, intermediate 
and good, and an agent always strictly preferred the good outcome to the bad outcome and ri
represented agent i’s von Neumann–Morgenstern utility index of the intermediate outcome. Or 
suppose that ri ∈ [0,1] corresponded to agent i’s willingness to pay for an object in terms of a 
numeraire good. The discussion above applies unchanged to these alternative interpretations of 
the payoff relevant parameter. The latter interpretation corresponds to the leading example in the 
mechanism design work of Dasgupta and Maskin (2000) and Bergemann and Morris (2012).

3. Model

3.1. Conventions

We record some terminological conventions used throughout the paper. A finite set is endowed 
with the discrete topology. A countable set is endowed with the discrete σ -algebra. A compact 
metric space is endowed with the Borel σ -algebra. A countable product 

∏∞
n=0 Xn of measurable 

spaces (Xn)
∞
n=0 is endowed with the product σ -algebra. If each Xn is a compact metrizable 

space, then 
∏∞

Xn is endowed with the product topology; in this case, 
∏∞

Xn is compact 
n=0 n=0
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and metrizable, and its Borel σ -algebra coincides with the product of Borel σ -algebras on Xn. 
For a measurable space X, we denote by �(X) the set of probability measures over X, endowed 
with the σ -algebra generated by {μ ∈ �(X) | μ(E) ≥ p} for each measurable subset E ⊆ X

and each p ∈ [0, 1]. If X is a compact metric space, then �(X) is endowed with the weak-* 
topology; in this case, �(X) is compact and metrizable, and its Borel σ -algebra coincides with 
the σ -algebra on �(X) generated from the Borel σ -algebra on X. For notational simplicity, we 
sometimes write μ(x) for μ({x}).

We let I be a non-empty finite set of agents, and Z be a finite set of outcomes with |Z| ≥ 2. 
To keep our language as standard as possible, we find it convenient to identify expected util-
ity preferences with representations of those preferences in RZ. Thus, we say that for lotteries 
p, p′ ∈ � (Z), an agent with “preference” ui ∈R

Z prefers p to p′ if and only if∑
z∈Z

p (z)ui (z) ≥
∑
z∈Z

p′ (z)ui (z) .

3.2. Restrictions on conditional preferences

We will require that each agent i’s conditional preferences over lotteries, given the opponents’ 
type profiles, can be represented by a von Neumann–Morgenstern utility index within a given set 
U•

i ⊂R
Z that satisfies

1. uniform ranking: there exists a pair of outcomes z, z ∈ Z such that ui(z) > ui(z) for every 
ui ∈ U•

i ; we normalize each ui so that ui(z) = 1 and ui(z) = 0;8

2. bounded utility: there exists Bi ≥ 1 such that |ui(z)| ≤ Bi for every ui ∈ U•
i and z ∈ Z (given 

the above normalization).

Given U•
i that satisfies the uniform ranking and bounded utility assumptions, we can embed 

U•
i into a simplex co(Ui) with vertices (i.e., extreme points) Ui = {u1

i , u
2
i , . . . , u

Ki

i } that satisfy 
the following properties:

1. unique representation: no two distinct utility indices in co(Ui) represent the same preference;
2. non-constant utility: no utility index in co(Ui) is constant;
3. linear independence: u2

i − u1
i , u

3
i − u1

i , . . . , u
Ki

i − u1
i are linearly independent.

Property 1 comes from the normalization among representations. Property 2 rules out com-
plete indifference from co(Ui) and follows from uniform ranking. Property 3 is the linear inde-
pendence assumption; it requires that every preference in co(Ui) can be uniquely represented as a 
convex combination of the extreme points. Our results hold for any (Ui)i∈I satisfying properties 
1 through 3, and the uniform ranking and bounded utility assumptions are sufficient conditions 
for them to hold.

We can illustrate the embedding and why Property 3 holds by construction of extreme points 
of a simplex. If |Z| ≥ 3 and agent i has uniform ranking between the first and second outcomes, 
choose Ui = {u1

i , u
2
i , . . . , u

|Z|−1
i } such that

8 For notational convenience, we require uniform ranking of a pair of pure outcomes. Our analysis would be unchanged 
even if we required uniform ranking of a pair of lotteries.
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u1
i = (1,0,−Bi,−Bi, . . . ,−Bi),

u2
i = (1,0,Ci,−Bi, . . . ,−Bi),

u3
i = (1,0,−Bi,Ci, . . . ,−Bi),

...

u
|Z|−1
i = (1,0,−Bi,−Bi, . . . ,Ci)

with sufficiently large Ci . (For example, let Ci = (2|Z| − 5)Bi .)
To illustrate the uniform ranking and bounded utility assumptions, we will describe how the 

conditional altruism example discussed in Section 2 fits into the framework of this Section. Sup-
pose that there are two agents and three outcomes, Z = {∅,1,2}, where the outcomes correspond 
to, respectively, no one getting the prize, agent 1 getting the prize, and agent 2 getting the prize. 
The set U1 consists of two vectors (0,1,0) and (0,1,1) corresponding to, respectively, the ex-
treme preferences where the agent 1 is indifferent between the other agent getting the prize 
(outcome 2) and no one getting the prize (outcome ∅) and where the agent is indifferent be-
tween the other agent getting the prize (outcome 2) and getting the prize herself (outcome 1). 
Symmetrically, U2 consists of two vectors (0,0,1) and (0,1,1).

We can also use this example to illustrate how the set of allowable preferences can be gener-
alized. For example, we could replace the two extreme preferences of agent 1 by (0,1,B1) and 
(0,1,−B1), for some large B1 ≥ 1. This allows for the possibility that agent 1 strictly prefers 
agent 2 getting the prize to getting the prize himself. And it allows a “spiteful” agent 1 who 
strictly prefers no one getting the prize to agent 2 getting the prize. This continues to satisfy the 
uniform ranking and bounded utility assumptions.

We will hold (Ui)i∈I fixed throughout our analysis, except in Sections 5.3–5.5. In Section 5.3, 
we will discuss a sense in which our main results are independent of the choice of (Ui)i∈I .9 Re-
call that while each co(Ui) represents a set of expected utility preferences over lotteries, co(Ui)

is isomorphic to the set of probability distributions over its extreme points, � (Ui), and this will 
play an important role in our presentation. In particular, a preference can then conveniently be 
thought of as a probability distribution over “private states” Ui .

3.3. Type spaces

We first describe implicit, self-referential, type spaces allowing interdependent preferences. 
Given our embedding of each agent’s utility indices within a simplex, it is convenient to repre-
sent his type as a probability distribution over private states (i.e., extreme points of that agent’s 
possible preferences) and the opponents’ type profiles.

A type space based on (Ui)i∈I , T = (Ti, μi)i∈I , consists of non-empty measurable spaces Ti

of agent i’s possible types, T−i ≡∏
j 
=i Tj , and measurable mappings:

μi : Ti → �(Ui × T−i ),

where μi assigns a belief μi(ti) ∈ �(Ui × T−i ) to each type ti ∈ Ti . We interpret the marginal 
probability distribution mrgT−i

μi(ti) ∈ �(T−i ) as type ti ’s belief over the opponents’ type pro-
files, and (a version of) the conditional probability distribution given the opponents’ type profiles 

9 In Section 5.4, we will also discuss how to relax the uniform ranking and bounded utility assumptions.
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μi(ti)(· | ·) : T−i → �(Ui) as utility indices that represent type ti’s conditional preferences 
given the opponents’ type profiles. Thus μi(ti) represents type ti ’s preferences over Anscombe–
Aumann acts defined on others’ types. Note that correlation in μi(ti) ∈ �(Ui × T−i ) is essential, 
as it allows us to express the dependency of type ti’s preferences on the opponents’ type profiles. 
Also note that unlike the “interdependent payoff universal belief space” TIP in Section 2, our 
type space does not specify type ti ’s conditional preferences given the opponents’ type profiles 
that he attaches probability zero to because the conditional probability distribution μi(ti)(· | ·) is 
identified only almost surely with respect to mrgT−i

μi(ti).

3.4. The universal type space

Because co(Ui) is isomorphic to �(Ui), we can interpret Ui as a finite set of extreme “payoff 
states” and ui ∈ co(Ui) as a probability distribution over those payoff states. Thus, we can treat 
T = (Ti, μi)i∈I formally as a belief type space, where agents have beliefs and higher order be-
liefs over private state spaces (Ui)i∈I . With minor modifications of Mertens and Zamir (1985)
and Brandenburger and Dekel (1993), both of which use a common state space, we define the 
universal type space T ∗ = (T ∗

i , μ∗
i )i∈I based on (Ui)i∈I , where T ∗

i is the set of all belief hierar-
chies of agent i that satisfy coherence and common certainty of coherence, which is nonempty, 
compact, and metrizable, and μ∗

i is the natural homeomorphism

μ∗
i : T ∗

i → �(Ui × T ∗−i ).

Note that the belief hierarchy of each type in the universal type space coincides with the type 
itself. Moreover, for every type space T = (Ti, μi)i∈I based on (Ui)i∈I , the mapping that maps 
each type in Ti to his hierarchy of beliefs:

μ̂i : Ti → T ∗
i

preserves the belief structure, i.e.,

μ∗
i (μ̂i(ti ))(E) = μi(ti)({(ui, t−i ) ∈ Ui × T−i | (ui, (μ̂j (tj ))j 
=i ) ∈ E})

for every measurable subset E ⊆ Ui × T ∗−i . We sometimes write μ̂i(·; T ) to emphasize the un-
derlying type space. We will refer to T ∗

i as the set of interdependent preference hierarchies, 
to highlight the interpretation of this mathematical object in this paper. In particular, for each 
type ti , belief hierarchy μ̂i(ti ) represents his interdependent preference hierarchy in such a way 
that the first order belief in μ̂i(ti ) represents his preference over lotteries, the second order belief 
in μ̂i(ti ) represents his preference over Anscombe–Aumann acts defined over profiles of other 
agents’ first order beliefs (which represent their preferences over lotteries), etc....

3.5. Interim correlated rationalizability

A mechanism (or game form) is given by M = ((Mi)i∈I , O), where Mi is a non-empty set 
of messages (actions) available to agent i, M =∏

i∈I Mi , and O : M → �(Z) is the outcome 
function. In this mechanism, agents send messages m = (mi)i∈I ∈ M simultaneously, and the 
mechanism assigns an outcome z with probability O(m)(z). A mechanism M = ((Mi)i∈I , O)

is finite if Mi is finite for every i ∈ I . Except in Section 4.2 and Appendix C.3, where we will 
formulate technical lemmas in terms of single-agent infinite mechanisms, we restrict ourselves 
to finite mechanisms.
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A type space T = (Ti, μi)i∈I and a mechanism M = ((Mi)i∈I , O) together define a Bayesian 
game. We will later define and discuss equilibrium and other solution concepts for this game. 
However, it is useful to first discuss a version of interim correlated rationalizability (ICR) in 
Dekel et al. (2007) adapted to the present setting. We differ from DFM with respect to the struc-
ture of Bayesian games: we have private state spaces (Ui)i∈I while DFM have a common state 
space. We also differ with respect to the interpretation: here, states represent extreme points of 
utility indices that represent each agent’s possible conditional preferences while at least in a lead-
ing interpretation of DFM, states represent external events on which the payoffs of the game are 
conditioned.10 Formally, given a type space T and a finite mechanism M, ICR is defined by 
induction as follows. The induction is initialized with

R0
i (ti) = Mi,

with the inductive step defined by:

Rn+1
i (ti ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
mi ∈ Mi

∣∣∣∣∣∣∣∣∣∣∣∣

there exists νi ∈ �(M−i × Ui × T−i ) s.t.
(i) νi({(m−i , ui, t−i ) ∈ M−i × Ui × T−i | mj ∈ Rn

j (tj )

for every j 
= i}) = 1,

(ii) mrgUi×T−i
νi = μi(ti),

(iii)
∫
M−i×Ui×T−i

∑
z∈Z ui(z)(O(mi,m−i )(z) − O(m′

i ,m−i )(z))

×νi(dm−i , dui, dt−i ) ≥ 0 for every m′
i ∈ Mi

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

and the limit is defined by:

Ri(ti) =
∞⋂

n=0

Rn
i (ti).

Note that the inductive step is well defined since we can show inductively that {(mi, ti ) ∈ Mi ×
Ti | mi ∈ Rn

i (ti)} is measurable in Mi × Ti for every i ∈ I and n ≥ 0. We say that mi is interim 
correlated rationalizable for ti if mi ∈ Ri(ti). We sometimes write Ri(ti; T , M) to emphasize 
the underlying type space and mechanism.

As in Dekel et al. (2007, Proposition 1 and Corollary 2), ICR depends only on hierarchies of 
interdependent preferences.

Proposition 1. For every type space T = (Ti, μi)i∈I based on (Ui)i∈I , every agent i ∈ I , and 
every type ti ∈ Ti , we have

Ri(ti;T ,M) = Ri(μ̂i(ti);T ∗,M)

for every finite mechanism M = ((Mi)i∈I , O).

We omit the proof of this Proposition, which requires a cosmetic modification of DFM’s 
proofs to incorporate private state spaces.

10 This difference in interpretation will be important in Sections 5.1 and 5.2. Correlation in an agent’s conjecture about 
that agent’s private state and other agents’ actions corresponds to interdependency of that agent’s preferences on others 
agents’ actions. In this sense, ICR can be seen as even more permissive in the present context. See Morris and Takahashi
(2012) for more on the foundations and interpretations of these solution concepts.
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4. Strategic distinguishability

4.1. Strategic distinguishability for ICR

For any interim solution concept, we say that two types are strategically indistinguishable
if their sets of solutions have a non-empty intersection for every finite mechanism. In this 
terminology, the following Theorem establishes that hierarchies of interdependent preferences 
characterize strategic distinguishability for ICR.

Theorem 1. For every pair of type spaces T = (Ti, μi)i∈I and T ′ = (T ′
i , μ

′
i )i∈I based on 

(Ui)i∈I , every agent i ∈ I , and every pair of types ti ∈ Ti and t ′i ∈ T ′
i , the following two con-

ditions are equivalent:

1. μ̂i(ti; T ) = μ̂i(t
′
i ; T ′);

2. Ri(ti; T , M) ∩ Ri(t
′
i ; T ′, M) 
= ∅ for every finite mechanism M.

Note that 1 ⇒ 2 follows from Proposition 1 and the nonemptyness of ICR. 2 ⇒ 1 follows from 
the following Proposition, which we will show by establishing the contrapositive ¬1 ⇒ ¬2. Let 
d∗
i be a metric compatible with the product topology on T ∗

i .

Proposition 2. For every ε > 0, there exists a finite mechanism M such that

d∗
i (μ̂i(ti;T ), μ̂i(t

′
i ;T ′)) > ε ⇒ Ri(ti;T ,M) ∩ Ri(t

′
i ;T ′,M) = ∅

for every pair of type spaces T = (Ti, μi)i∈I and T ′ = (T ′
i , μ

′
i )i∈I based on (Ui)i∈I , every agent 

i ∈ I , and every pair of types ti ∈ Ti and t ′i ∈ T ′
i .

The Proposition proves a little more than what is needed to prove Theorem 1: it shows that if 
we fix a metric d∗

i and ε > 0, we can strategically distinguish all types that are at least ε apart 
using the same mechanism. In the remainder of this Subsection, we describe the mechanism used 
to prove this result, which is the main technical contribution of the paper.

The strategy of proof is as follows. If two types are ε apart in the metric compatible with 
the product topology on T ∗

i , then there must exist ε > 0 and N such that the types’ N th or-
der preferences are at least ε apart. We will choose “accuracy” levels 0 < ε0 ≤ ε1 ≤ · · · ≤ εN . 
For each agent i and n ≥ 1, agent i will report an element of an εn−1-dense finite subset of his 
possible nth order preferences. For each agent i and n ≥ 1, there will be a component of the 
mechanism, chosen with positive probability, that will pick an outcome as a function of agent 
i’s report about his nth order preference and the other agents’ reports about their (n − 1)th 
and lower order preferences. The mechanism will have the property that as long as the other 
agents’ reports are within εn−1 of their true preferences, then agent i’s best responses are within 
εn of his true nth order preference. Using this property inductively, we will show that each 
agent’s ICR reports about his nth order preference are within εn of his true nth order prefer-
ence.

The last step of the argument uses a robust scoring rule described in the next Subsection. We 
show that, for every ε > 0, we can find δ > 0 and a scoring rule that gives the agent an incentive 
to report preferences within ε of his true preference even if the outcomes of the scoring rule may
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be arbitrarily perturbed within δ. This Lemma can then be iteratively applied to construct the 
mechanism used in the main proof.

Abreu and Matsushima (1992) and Dekel et al. (2006) follow similar arguments up until the 
second last step. AM exploit the finiteness of the type space. They can choose an ε > 0 such that 
the (j, n +1)th component occurs with probability at most ε times that of the (i, n)th component. 
Now ε > 0 can be chosen uniformly small enough so that agents can be strictly incentivized to 
report their true preferences exactly at every order.11 DFM allow for arbitrary, possibly infinite, 
type spaces, so it is not possible to find a uniform ε that makes the argument in AM work. In 
DFM, it is necessary to have each agent report an element of a finite grid of beliefs at every order. 
But payoffs can be chosen independently across agents, so it is possible to do the approximation 
inductively. Because neither proof strategy is available in our setting, we need a novel robust 
scoring rule to make the argument work.

4.2. The robust scoring rule

As a preliminary step, we first analyze a single-agent mechanism that reveals his state-
dependent preferences. In this Subsection, fix a compact metric space X of states with metric d . 
Let d� be a metric compatible with the weak-* topology over �(U × X). Let F(X) be the set 
of (Anscombe–Aumann) acts over X, i.e., the set of measurable functions f : X → �(Z). Then 
each μ ∈ �(U × X) uniquely represents a state-dependent preference over F(X). That is, the 
agent with preference μ weakly prefers f to f ′ if and only if∫

U×X

∑
z∈Z

u(z)(f (x)(z) − f ′(x)(z))μ(du,dx) ≥ 0.

We define the choice function with respect to μ:

Cμ(f,f ′) =
{

f if μ weakly prefers f to f ′,
f ′ if μ strictly prefers f ′ to f ,

for every f, f ′ ∈ F(X).
Let Fc(X) ⊆ F(X) be the set of continuous acts over X. Since X is a compact metric space, by 

the Stone–Weierstrass theorem, there exists a countable dense subset F = {f1, f2, . . .} ⊂ Fc(X)

in the sup norm. Fix such an F .
We consider the following direct mechanism M0 = (M0, O0) for a single agent with message 

set M0 = �(U × X) and outcome function O0 : M0 × X → �(Z) given by

O0(m,x)(z) =
∞∑

k=1

∞∑
l=1

2−k−lCm(fk, fl)(x)(z), (1)

for each realized state x ∈ X and each reported preference m ∈ M0. Under the mechanism M0, 
the agent reports a preference. Then the mechanism randomly draws an ordered pair (fk, fl) of 
acts from F with probability 2−k−l , and then assigns the agent with the preferred act according 
to the reported preference.12

11 In the related work of Bergemann and Morris (2009b), there is a finite set of possible “payoff types” and an analogous 
trick can be applied.
12 Note that M0 is not a finite mechanism. The mechanism we will construct in the next Subsection to prove Proposi-
tion 2, however, is finite.
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In Lemma 1 below, we show that truth telling is optimal in M0 for every preference. Indeed, 
by invoking the compactness of X, we show a “robust” version of optimality: in every mechanism 
close to M0, the agent strictly prefers reporting his approximately true preferences to reporting 
any other.

Recall that for each message m, O0(m, ·) is an act over X, which determines an outcome z
with probability O0(m, x)(z) when nature chooses x ∈ X. We consider two sources of pertur-
bations to this act. First, with small probability, the outcome may not be chosen according to 
O0(m, x). Formally, for each δ > 0 and measurable space 
, we consider a perturbed outcome 
function O : M0 × X × 
 → �(Z) such that

‖O(·, ·,ω) − O0‖ ≡ sup
m∈M0,x∈X,z∈Z

|O(m,x,ω)(z) − O0(m,x)(z)| ≤ δ

for every ω ∈ 
. Second, when nature is supposed to choose x, nature may instead choose x′ in 
a neighborhood of x. Formally, for each δ > 0, μ ∈ �(U × X), and measurable space 
, let

�δ,μ(U ×X×
) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩μ′′ ∈ �(U × X × 
)

∣∣∣∣∣∣∣∣∣∣
there exists μ′ ∈ �(U × X × X′ × 
)

with X′ = X s.t.
(i) μ′(U × {(x, x′) | d(x, x′) ≤ δ} × 
) = 1,

(ii) mrgU×Xμ′ = μ,

(iii) mrgU×X′×
μ′ = μ′′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

(2)

be the set of preferences over noisy acts induced by the original preference μ.13

Lemma 1. For every ε > 0, there exists δ > 0 such that the following is true for every preference 
μ ∈ �(U × X), every pair of messages m, m′, every measurable space 
, and every perturbed 
outcome function O : M0 × X × 
 → �(Z): if d�(μ, m) ≤ δ, d�(μ, m′) > ε, and ‖O(·, ·, ω) −
O0‖ ≤ δ for every ω ∈ 
, then every preference in �δ,μ(U × X × 
) strictly prefers O(m, ·, ·)
to O(m′, ·, ·).

The proof is in Appendix A.
We call the mechanism M0 = (M0, O0) a “robust scoring rule” because it elicits the agent’s 

preference in the following robust way. For each fixed preference of the agent, every message 
that is close to that fixed preference is strictly preferred by the agent to every message which 
is at some distance from that preference, under every mechanism close to our scoring rule and 
every preference close to the fixed preference. The arguments of AM and DFM also use scoring 
rules, and we extend their use to elicit hierarchies of interdependent preferences or beliefs. For 
their arguments, it is enough to use a standard scoring rule. The extra generality of our setting 
necessitates the use of a robust scoring rule.

4.3. Proof of Proposition 2

We first prepare for notations for belief hierarchies. Recall that we follow the standard pro-
cedure and construct the universal type space T ∗ = (T ∗

i , μ∗
i )i∈I of belief hierarchies. Specif-

ically, for each i ∈ I , letting Hi,0 = {∗} be initialized with a single element, we denote by 

13 We introduce X′ as a copy of X to notationally distinguish the marginal of μ′ on X (the “first X”) and on X′ (the 
“second X”).
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Hi,n = Hi,n−1 ×�(Ui ×H−i,n−1) =∏n−1
k=0 �(Ui ×H−i,k) the set of higher order beliefs up to nth 

order for each n ≥ 1. Then we can construct the universal type space T ∗
i ⊂∏∞

n=0 �(Ui ×H−i,n)

as the set of agent i’s belief hierarchies satisfying coherence, in the sense that lower order beliefs 
are marginals of higher order beliefs, and common certainty of coherence. Recall that d∗

i is a 
metric compatible with the product topology on T ∗

i . Let di,n be a metric compatible with the 
topology on the set of agent i’s nth order beliefs, �(Ui × H−i,n−1).

Fix any ε > 0. By the definition of the product topology, there exist ε̄ > 0 and N ∈ N such that, 
for every (ti,n)∞n=1, (t

′
i,n)

∞
n=1 ∈ T ∗

i , if d∗
i ((ti,n)

∞
n=1, (t

′
i,n)

∞
n=1) > ε, then there exists some n ≤ N

such that di,n(ti,n, t ′i,n) > ε̄. Pick such ε̄ and N .
For each i ∈ I and n ≤ N , we apply Lemma 1 by substituting

X = H−i,n−1 =
∏
j 
=i

n−2∏
k=0

�(Uj × H−j,k),

d = max
j 
=i,1≤k≤n−1

dj,k,

d� = di,n.

Pick a countable dense subset of Fc(H−i,n−1), and define O0
i,n : �(Ui × H−i,n−1) × H−i,n−1 →

�(Z) as in (1). By Lemma 1, there exist 0 < ε0 ≤ ε1 ≤ · · · ≤ εN ≤ ε̄/2 such that if 
di,n(ti,n, mi,n) ≤ εn−1, di,n(ti,n, m′

i,n) > εn, and ‖Oi,n(·, ·, ω) − O0
i,n‖ ≤ εn−1 for every ω ∈ 
, 

then every preference in �εn−1,ti,n (Ui × H−i,n−1 × 
) strictly prefers Oi,n(mi,n, ·, ·) to 
Oi,n(m

′
i,n, ·, ·).

We define a finite mechanism M = ((Mi)i∈I , O) as follows. For each i ∈ I and n ≤ N , 
let Mi,n be any εn−1-dense finite subset of �(Ui × H−i,n−1) with respect to di,n, and Mi =∏N

n=1 Mi,n. Define O : M → �(Z) by

O(m)(z) = 1 − δ

|I |(1 − δN)

∑
i∈I

N∑
n=1

δn−1O0
i,n(mi,n,m−i,1, . . . ,m−i,n−1)(z)

for each m ∈ M and z ∈ Z, where δ > 0 is small enough to satisfy (1 − δ)/δ ≥ (|I | − 1)(1 −
ε0)/ε0.

Lemma 2. For every type space T = (Ti, μi)i∈I based on (Ui)i∈I , every agent i ∈ I , and every 
type ti ∈ Ti , we have

mi ∈ Rn
i (ti;T ,M) ⇒ di,n(μ̂i,n(ti),mi,n) ≤ εn

for every n ≤ N .

The proof of this Lemma is in Appendix A. We can now complete the proof of Proposition 2.

Proof of Proposition 2. Let M be the finite mechanism defined above. Pick any pair of type 
spaces T and T ′ based on (Ui)i∈I , i ∈ I , ti ∈ Ti , and t ′i ∈ T ′

i . Suppose that there exists mi =
(mi,1, . . . , mi,N) ∈ Ri(ti; T , M) ∩ Ri(t

′
i ; T ′, M). For every n ≤ N , since ai ∈ Rn

i (ti; T , M) ∩
Rn

i (t ′i ; T ′, M), we have

di,n(μ̂i,n(ti;T ), μ̂i,n(t
′
i ;T ′)) ≤ di,n(μ̂i,n(ti;T ),mi,n) + di,n(μ̂i,n(t

′
i ;T ′),mi,n) ≤ 2εn ≤ ε̄

by Lemma 2. Thus, d∗
i (μ̂i(ti; T ), μ̂i(t

′
i ; T ′)) ≤ ε. �
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4.4. Strategic distinguishability for equilibrium

Our analysis thus far concerned the solution concept of ICR. We now change our focus to 
equilibrium. Given a type space T and a finite mechanism M, we say that a profile σ = (σi)i∈I

of measurable behavioral strategies σi : Ti → �(Mi) is an equilibrium if∫
Ui×T−i

∑
m−i∈M−i

∑
z∈Z

ui(z)(O(mi,m−i )(z) − O(m′
i ,m−i )(z))

×
⎛⎝∏

j 
=i

σj (tj )(mj )

⎞⎠μi(ti)(dui, dt−i ) ≥ 0

for every i ∈ I , every ti ∈ Ti and every mi, m′
i ∈ Mi with σi(ti)(mi) > 0. We denote by 

Ei(ti; T , M) the set of actions played by type ti with positive probability in some equilibrium.
We have the following (called the “pull-back property” in Friedenberg and Meier (2015)):

Proposition 3. For every type space T = (Ti, μi)i∈I based on (Ui)i∈I , every agent i ∈ I , and 
every type ti ∈ Ti , we have

Ei(ti;T ,M) ⊇ Ei(μ̂i(ti); T̂ ,M)

for every finite mechanism M = ((Mi)i∈I , O), where T̂ = (T̂i , μ∗
i |T̂i

)i∈I is a belief closed sub-

space of the universal type space T ∗ = (T ∗
i , μ∗

i )i∈I with T̂i = μ̂i(Ti) for each i ∈ I .

The proof is in Appendix A.
We say that a type space T = (Ti, μi)i∈I is finite (or countable) if Ti is finite (or countable) 

for every i ∈ I . A type is a finite (or a countable) type if it lies in a finite (or countable) type 
space. Equilibria do not always exist on uncountable type spaces: see Simon (2003), Friedenberg 
and Meier (2015) and Hellman (2014). However, since the mechanism is finite, the existence of 
equilibria is guaranteed on any countable type space.14 This gives us:

Theorem 2. For every pair of countable type spaces T = (Ti, μi)i∈I and T ′ = (T ′
i , μ

′
i )i∈I based 

on (Ui)i∈I , every agent i ∈ I , and every pair of types ti ∈ Ti and t ′i ∈ T ′
i , the following two 

conditions are equivalent:

1. μ̂i(ti; T ) = μ̂i(t
′
i ; T ′);

2. Ei(ti; T , M) ∩ Ei(t
′
i ; T ′, M) 
= ∅ for every finite mechanism M.

14 To see this, let Ti ⊆ N without loss of generality. Then the set (�(Mi))
Ti of behavior strategies of agent i is a 

nonempty, compact and convex subset of a locally convex and Hausdorff topological vector space RTi×Mi (endowed 
with the product topology), and agent i’s payoff function

vi (σ ) =
∑
ti∈Ti

2−ti
∑

ui∈Ui ,t−i∈T−i

∑
m∈M

∑
z∈Z

ui(z)O(m)(z)

⎛⎝∏
j∈I

σj (tj )(mj )

⎞⎠μi(ti )(ui , t−i )

is affine in σi and continuous in σ (under the product topology) by the Lebesgue convergence theorem. Thus, the ex-
istence of equilibria follows from Berge’s maximum theorem and the Kakutani–Fan–Glicksberg fixed-point theorem in 
the usual way.
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Proof. For the 1 ⇒ 2 direction, we denote t∗i := μ̂i(ti; T ) = μ̂i(t
′
i ; T ′). By Proposition 3, we 

have

Ei(ti;T ,M) ∩ Ei(t
′
i ;T ′,M) ⊇ Ei(t

∗
i ; T̂ ,M) ∩ Ei(t

∗
i ; T̂ ′,M),

where T̂ = (T̂i , μ∗
i |T̂i

)i∈I and T̂ ′ = (T̂ ′
i , μ

∗
i |T̂ ′

i
)i∈I are countable belief closed subspaces of the 

universal type space T ∗ = (T ∗
i , μ∗

i )i∈I with T̂i = μ̂i(Ti; T ) and T̂ ′
i = μ̂i(T

′
i ; T ′) for each i ∈ I . 

Let T̂ ′′ = (T̂i ∩ T̂ ′
i , μ

∗
i |T̂i∩T̂ ′

i
)i∈I . Applying Proposition 3 to inclusion maps from T̂ ′′ to T̂ and 

to T̂ ′, we can show that the restriction of every equilibrium of (T̂ , M) or of (T̂ ′, M) to T̂ ′′ is 
also an equilibrium of (T̂ ′′, M). Conversely, by the fixed-point argument sketched in footnote 14, 
we can show that every equilibrium of (T̂ ′′, M) extends to equilibria of (T̂ , M) and of (T̂ ′, M)

(called the “extension property” in Friedenberg and Meier (2015)). Thus, both Ei(t
∗
i ; ̂T , M) and 

Ei(t
∗
i ; ̂T ′, M) are equal to Ei(t

∗
i ; ̂T ′′, M), which is nonempty.

The 2 ⇒ 1 direction, or its contrapositive ¬1 ⇒ ¬2, follows from Proposition 2 and the fact 
that equilibrium is a refinement of ICR. �

The 1 ⇒ 2 direction of Theorem 2 has been known in the literature. For example, in the 
setting with common certainty of conditional preferences over lotteries, Yildiz (2015) shows 
the existence of an invariant equilibrium defined over all finite types, which depends only on 
Mertens–Zamir belief hierarchies about external states.15

It is immediate from Theorems 1 and 2 that hierarchies of interdependent preferences char-
acterize strategic distinguishability for other interim solution concepts that are coarser than 
equilibrium and finer than ICR, for example, interim independent rationalizability.

5. Extensions

5.1. Incorporating external states

We have so far considered “uncontingent” mechanisms M = ((Mi)i∈I , O) with O : M →
�(Z), where agents’ messages alone determine outcomes. We modeled agents’ interdependent 
preferences, which entailed modeling the agents’ incomplete information about each others’ pref-
erences. We showed that strategic distinguishability – using uncontingent mechanisms – was 
characterized by hierarchies of interdependent preferences.

However, game theorists often talk about incomplete information about external states, which 
we shall denote by θ ∈ 
 (instead of or in addition to “private states” that we have introduced 
to express interdependent preferences). For simplicity, we assume 
 to be finite. Obviously, it 
will not be possible to elicit agents’ beliefs and higher order beliefs about external states without 
allowing for richer mechanisms that assign outcomes contingent on those external states. Thus 
we consider “
-contingent” mechanisms M = ((Mi)i∈I , O) with O : M × 
 → �(Z), where 
the domain of the outcome function is extended to M ×
. With this richer class of mechanisms, 
we will be able to achieve a finer strategic distinction of types, since these external states may 
also impact preferences, and beliefs and higher order beliefs about them may also be revealed. 
We excluded discussion of such external states earlier because they were incidental to our pri-
mary exercise of characterizing strategic distinguishability for interdependent preferences. But 
reporting this extension now allows us to connect our result to those of DFM, according to their 

15 See Section 5.2 for an interpretation of common certainty of conditional preferences in our setting.
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original interpretation, in an exact way (see the next Subsection). The results and proofs do not 
change, once we alter our definitions of type spaces, mechanisms and solution concepts to reflect 

 in the appropriate way. Thus, we will merely state how the definitions must be changed in 
order for our previous results to hold as stated.

A type space T = (Ti, μi)i∈I now consists of non-empty measurable spaces Ti of agent i’s 
possible types and measurable mappings μi : Ti → �(Ui ×
 ×T−i ), i.e., a belief type space over 
private states and external states (Ui ×
)i∈I representing agents’ higher order preferences, their 
beliefs and higher order beliefs about 
, and the interaction of the two. The universal type space 
based on (Ui × 
)i∈I , T ∗ = (T ∗

i , μ∗
i )i∈I , is constructed with the homeomorphism μ∗

i : T ∗
i →

�(Ui × 
 × T ∗−i ). For every type space T = (Ti, μi)i∈I based on (Ui × 
)i∈I , the mapping 
μ̂i : Ti → T ∗

i maps each type in Ti to its hierarchy of beliefs over (Ui × 
)i∈I . A 
-contingent 
mechanism M = ((Mi)i∈I , O) consists of non-empty sets Mi of messages available to agent i
and the outcome function O : M × 
 → �(Z). Given a type space T = (Ti, μi)i∈I and a finite 

-contingent mechanism M = ((Mi)i∈I , O), we define ICR by

R0
i (ti ) = Mi,

Rn+1
i (ti ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
mi ∈ Mi

∣∣∣∣∣∣∣∣∣∣∣∣

there exists νi ∈ �(M−i × Ui × 
 × T−i ) s.t.
(i) νi({(m−i , ui, θ, t−i ) | mj ∈ Rn

j (tj ) for every j 
= i}) = 1,

(ii) mrgUi×
×T−i
νi = μi(ti),

(iii)
∫
M−i×Ui×
×T−i

∑
z∈Z ui(z)(O(mi,m−i , θ)(z)

− O(m′
i ,m−i , θ)(z))νi(dm−i , dui, dθ, dt−i ) ≥ 0

for every m′
i ∈ Mi

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

Ri(ti) =
∞⋂

n=0

Rn
i (ti).

A profile σ = (σi)i∈I of measurable behavioral strategies σi : Ti → �(Mi) is an equilibrium if∫
Ui×
×T−i

∑
m−i∈M−i

∑
z∈Z

ui(z)(O(mi,m−i , θ)(z) − O(m′
i ,m−i , θ)(z))

×
⎛⎝∏

j 
=i

σj (tj )(mj )

⎞⎠μi(ti)(dui, dθ, dt−i ) ≥ 0

for every i ∈ I , every ti ∈ Ti , and every mi, m′
i ∈ Mi with σi(ti)(mi) > 0.

Now Theorems 1 and 2 remain true after replacing “based on (Ui)i∈I ” by “based on 
(Ui × 
)i∈I ” and “mechanism” by “
-contingent mechanism” and interpreting “μ̂i(ti; T )” and 
“μ̂i(t

′
i ; T ′)” as hierarchies of beliefs over (Ui × 
)i∈I . Our previous analysis corresponds to the 

special case where 
 is a singleton.

5.2. Common certainty of conditional preferences

We now maintain the extension incorporating external states (from the previous Subsection), 
but impose the restriction that there is “common certainty of conditional preferences,” i.e., there 
is common certainty of how each outcome translates into a von Neumann–Morgenstern utility 
index. This corresponds to the setting of DFM, where it is implicitly assumed that there is com-
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mon certainty of the payoffs associated with an action profile and an external state. This gives us 
one way of formally relating our results to those in DFM.16

We say that there is common certainty of conditional preferences if each Ui is a singleton {ui}, 
where ui ∈R

Z is not constant over Z. Under common certainty of conditional preferences, there 
is uncertainty and higher order uncertainty about external states but no uncertainty about con-
ditional preferences. Thus, the universal type space is simply the Mertens–Zamir universal type 
space, corresponding to the set of belief hierarchies about external states 
 satisfying coherence 
and common certainty of coherence.

Given that each Ui is a singleton, picking a contingent mechanism M = ((Mi)i∈I , O) with 
O : M × 
 → �(Z) is equivalent to picking a game with incomplete information about 

(a specification of payoffs as a function of message/action profiles and external states), with 
the proviso that the set of feasible payoff vectors is given by the convex hull of the set of payoff 
vectors that can arise from some given outcome. Write V for the set of payoff profiles that can 
be induced by some lottery over outcomes, so that

V = conv{(ui(z))i∈I ∈R
I | z ∈ Z}.

Now consider a game G = ((Mi)i∈I , g), where Mi is the set of actions for agent i and g : M ×

 → R

I assigns a payoff profile to each pair of action profile and the external state. We say that 
G is a V -game if g(m, θ) ∈ V for every m ∈ M and every θ ∈ 
. Every contingent mechanism 
M = ((Mi)i∈I , O) with O : M × 
 → �(Z) induces a V -game G = ((Mi)i∈I , g) with

g(m, θ) =
(∑

z∈Z

ui(z)O(m, θ)(z)

)
i∈I

for each m ∈ M and each θ ∈ 
; conversely, every V -game can be induced by some contingent 
mechanism.

Our definition of ICR in this case corresponds exactly to that in DFM. Our Theorem 1 now 
proves that two types have the same belief hierarchy over 
 if and only if they have the same 
ICR actions in all V -games. In the case that V is a non-degenerate product set, i.e.,

V =
∏
i∈I

[
vi, vi

]
with vi < vi for every i ∈ I , this result was already proved in DFM. Specifically, for every 
non-degenerate product set V , Dekel et al. (2006, Lemma 4) show that if two types have distinct 
belief hierarchies, then there is a V -game where they have disjoint ICR action sets;17 conversely, 
Dekel et al. (2007, Proposition 1 and Corollary 2) show that two types with the same belief 
hierarchy have the same ICR actions (for finite types and general types, respectively) in every 
V -game.

16 There is an alternative interpretation of DFM under which their results can be seen as a special case of the results 
in this paper without appeal to “external” states. Observe that uncontingent mechanisms and private states – profiles of 
extremal preferences, in our simplex representation – jointly define a set of utility functions from message profiles and 
states to payoffs, i.e., a game with incomplete information over (Ui )i∈I . If the outcome space were sufficiently rich, 
this problem would reduce to a version of DFM. If not, results in this paper would identify strategic distinguishability in 
restricted classes of games.
17 Dekel et al. (2006, Lemma 4) prove something a little stronger: for every distance between nth order beliefs, we 
can find ε > 0 such that no action is both δ-interim correlated rationalizable for one type and (δ + ε)-interim correlated 
rationalizable for the other type.
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The assumption that the set V is a non-degenerate product set has a natural counterpart in 
our setting. Say that we have a private good environment if the outcome space Z has a product 
structure Z =∏

i∈I Zi , and each agent i’s utility from outcome z depends only on the ith com-
ponent zi , so ui (z) = ũi (zi) for some ̃ui : Zi →R. In this case, the set of feasible payoff vectors 
has the product structure

V =
∏
i∈I

[
vi, vi

]
,

where

vi = min
zi∈Zi

ũi (zi) and vi = max
zi∈Zi

ũi (zi) .

But our Theorem 1 did not rely on the private good environment assumption. If the assumption 
of common certainty of conditional preferences is maintained but the private good assumption is 
dropped, then the set V of feasible payoff profiles could be any convex polytope whose projection 
in each dimension is non-degenerate. For example, our Theorem would apply to environments 
where

V =
{

v ∈ [−1,1]I
∣∣∣∣∣∑
i∈I

vi = 0

}
so we restricted attention to zero sum games. And it would apply to environments where

V =
{
v ∈ [0,1]I ∣∣vi = vj for all i, j ∈ I

}
,

so we restricted attention to common interest games. Thus, while the original proof of Dekel et 
al. (2006, Lemma 4) relied on the assumption that all payoff vectors are feasible, our Theorem 1
– with external states added and common certainty of conditional preferences assumed – estab-
lishes that it would remain true if DFM had restricted attention to zero sum games, common 
interest games, or many other subsets of games which restricted how agents’ payoffs can vary.

Gossner and Mertens (2001) show that a zero sum Bayesian game has a value which depends 
only on the probability distribution over Mertens–Zamir hierarchies and is increasing in informa-
tiveness in Blackwell’s sense. The argument requires a strategic distinguishability result for the 
case of zero sum games.18 While the formulation of our strategic distinguishability question and 
the proof are different from those arising in Gossner and Mertens (2001), the argument above 
suggests when and how the approach in this paper could be used to develop analogous strategic 
distinguishability exercises in different classes of games.

5.3. Strategic distinguishability without simplex representations

The simplex representation was convenient in stating and proving our results, and relating 
them to the existing literature. We will now state our main result without reference to a simplex 
representation. A cost of doing so is that we lose our utility representations of interdependent 
preferences. We do so nonetheless in order to verify the independence of the result from the 
simplex representation chosen, and also as a prelude to relaxing our uniform ranking and bounded 
utility assumptions in the next section, where a simplex representation is not available.

18 Gossner and Mertens (2001) is an abstract of unpublished work; we are grateful to Olivier Gossner for privately 
sharing notes from the complete paper.
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Let X be a countable set of states.19 Recall that F(X) denotes the set of all acts over X. 
Let P (X) be the set of all preferences � over F (X) represented by a belief about states 
μ ∈ �(X) and a μ-absolutely summable state-dependent utility index u : X × Z → R, i.e., ∑

x |u(x, z)|μ(x) < ∞ for every z ∈ Z, as follows:

f � f ′ ⇔
∑
x∈X

∑
z∈Z

u(x, z)(f (x)(z) − f ′(x)(z))μ(x) ≥ 0.

With this notation, we can define a countable type space T = (Ti, πi)i∈I with

πi : Ti → P(T−i ),

where for each type ti ∈ Ti , πi(ti) denotes the preference of type ti over acts over the oppo-
nents’ types. We write π̂i,1 (ti) for the restriction of πi(ti) to lotteries, and call it his first order 
preference. We also write π̂i,2 (ti) for the restriction of πi(ti) to acts that depend only on the 
opponents’ first order preferences, and we call it his second order preference. We define third 
order, and higher order, preferences similarly, and we write π̂i(ti ) = (π̂i,1(ti), π̂i,2(ti), . . .) for 
the hierarchy of type ti’s higher order preferences.

We now impose the uniform ranking and bounded utility assumptions on preferences. Given 
a pair of outcomes z, z ∈ Z and a utility bound B ≥ 1, we say that a preference � ∈ P (X) is 
(z, z, B)-bounded if it is represented by (μ, u) such that

1. uniform ranking: u(x, z) > u(x, z) for every x ∈ X; we normalize each u(x, ·) so that 
u(x, z) = 1 and u(x, z) = 0;

2. bounded utility: |u(x, z)| ≤ B for every z ∈ Z (given the above normalization).

Let Pz,z,B(X) be the set of all (z, z, B)-bounded preferences over F(X). Given a profile B =
(zi, zi

, Bi)i∈I of pairs of outcomes zi, zi
∈ Z and utility bounds Bi ≥ 1, we say that a countable 

type space T = (Ti, πi)i∈I is B-bounded if πi(ti) ∈ Pzi,zi ,Bi
(T−i ) for every i ∈ I and ti ∈ Ti .

Given a countable type space T = (Ti, πi)i∈I and a finite mechanism M = ((Mi)i∈I , O), we 
say that a profile σ = (σi)i∈I of behavioral strategies σi : Ti → �(Mi) is an equilibrium if πi(ti)

weakly prefers O(mi, ·) ◦ σ−i to O(m′
i , ·) ◦ σ−i for every agent i ∈ I , every type ti ∈ Ti , and 

every messages mi, m′
i ∈ Mi with σi(ti)(mi) > 0.20 Let Ei(ti) denote the set of actions played 

by type ti with positive probability in some equilibrium. Given B = (zi, zi
, Bi)i∈I , we also define 

the set of actions that are B-boundedly rationalizable for type ti , denoted by Ri,B(ti), as follows:

R0
i,B(ti) = Mi,

Rn+1
i,B (ti) =

⎧⎪⎪⎨⎪⎪⎩mi ∈ Mi

∣∣∣∣∣∣∣∣
there exists �i ∈ Pzi,zi ,Bi

(M−i × T−i ) s.t.
(i) �i is certain of

∏
j 
=i graph(Rn

j,B),

(ii) mrgT−i
�i = πi(ti),

(iii) �i weakly prefers O(mi, ·) to O(m′
i , ·) for every m′

i ∈ Mi

⎫⎪⎪⎬⎪⎪⎭ ,

Ri,B(ti) =
∞⋂

n=0

Rn
i,B(ti),

19 We assume countable state spaces to avoid measurability issues as well as to guarantee the existence of equilibria.
20 We define O(mi, ·) ◦ σ−i as an act over T−i given by O(mi, σ−i )(t−i )(z) =

∑
m−i

O(mi, m−i )(z)×∏
j 
=i σj (tj )(mj ) for every t−i ∈ T−i and z ∈ Z.
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where we say that � ∈ P(X) is certain of E ⊆ X if X \ E is Savage-null with respect to �, i.e., 
f ∼ f ′ whenever f and f ′ agree on E, and the marginal of � ∈ P(X × Y) on X, denoted by 
mrgX� ∈ P(X), is the restriction of � to F(X).

Then we have the following result.

Theorem 3. Fix a profile of uniform rankings and utility bounds B = (zi, zi
, Bi)i∈I . For every 

pair of countable and B-bounded type spaces T = (Ti, πi)i∈I and T ′ = (T ′
i , π

′
i )i∈I , every agent 

i ∈ I , and every pair of types ti ∈ Ti and t ′i ∈ T ′
i , the following three conditions are equivalent:

1. π̂i(ti; T ) = π̂i(t
′
i ; T ′);

2. Ri,B(ti; T , M) ∩ Ri,B(t ′i ; T ′, M) 
= ∅ for every finite mechanism M;
3. Ei(ti; T , M) ∩ Ei(t

′
i ; T ′, M) 
= ∅ for every finite mechanism M.

Proof. For each i ∈ I , let Ui be the set of extreme points of a simplex such that co(Ui) contains 
all utility indices ui with ui(zi) = 1, ui(zi

), and |ui(z)| ≤ Bi for every z ∈ Z. Note that two types 
have the same hierarchy of interdependent preferences if and only if they can be represented 
in (Ui)i∈I -based type spaces with the same hierarchy of beliefs over (Ui)i∈I . 1 ⇒ 3 follows 
from Theorem 2 and this fact. 3 ⇒ 2 follows from the fact that equilibrium is a refinement of 
B-bounded rationalizability. 2 ⇒ 1 follows from Theorem 1, the previous fact, and the fact that 
B-bounded rationalizability is a refinement of ICR based on (Ui)i∈I . �

Theorem 3 is a simple rewriting of Theorems 1 and 2.
This statement of the theorem addresses the following two issues that arise from our modeling 

choice.

Too rich type spaces First, in Section 2, among other universal type spaces, we discussed a 
payoff universal type space TP for our conditional altruism example, but dismissed it as it was 
too rich for two distinct types to be strategically distinguishable. Indeed, if we adopted too rich 
a universal type space, two different universal types may not be strategically distinguishable. To 
be specific, let us arbitrarily pick a profile of finite sets of utility indices 
i ⊂ co(Ui) and an 
(
i)i∈I -based type space T
 = (Ti, μi)i∈I with μi : Ti → �(
i × Ti). If 
i is not the set of 
extreme points of a simplex, then a point in co(
i) may be represented by two different con-
vex combinations of 
i , and hence two types with different hierarchies of beliefs over (
i)i∈I

may have the same hierarchy of interdependent preferences. By Theorem 3, two countable types 
are strategically distinguishable if and only if they have different hierarchies of interdependent 
preferences. Thus, we cannot strategically distinguish two types with the same hierarchy of in-
terdependent preferences even if they have different hierarchies of beliefs over (
i)i∈I .

Change of “coordinate systems” Second, we may be able to represent the same type space 
in two different ways, (Ui)i∈I -based and (U ′

i )i∈I -based type spaces, where both are the sets of 
extreme points of simplices. Clearly, the same hierarchy of interdependent preferences can be 
represented differently by hierarchies of beliefs over (Ui)i∈I and over (U ′

i )i∈I , which, in turn, 
can have different versions of ICR. However, although ICR depends on the simplex profile, 
equilibrium does not. Thus strategic distinguishability for equilibrium, whether a pair of types 
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have disjoint equilibrium action sets or not, does not depend on the simplex profile.21 Moreover, 
two types have the same hierarchy of beliefs over (Ui)i∈I if and only if they have the same 
hierarchy of beliefs over (U ′

i )i∈I . In this sense, the choice of the simplex profile is irrelevant for 
our characterization that identifies which pair of types have the same hierarchy of beliefs over 
(Ui)i∈I .

5.4. Relaxing the uniform ranking and bounded utility assumptions

Here, we show that it is possible to relax the uniform ranking assumption and assume in-
stead that preferences are not completely indifferent over outcomes.22 At the same time, we also 
replace the bounded utility assumption by what we call the “λ-continuity” assumption, which 
imposes conditions on preferences directly.

Given λ ∈ (0, 1/2], we say that a preference � ∈ P (X) is λ-continuous if

1. no complete indifference over outcomes: there exists a pair of outcomes z, z ∈ Z such that 
z � z;

2. λ-continuity: (1 − λ) z + λf � (1 − λ) z + λf ′ for every f, f ′ ∈ F (X) (given the above pair 
z, z).

Thus we require that � not be completely indifferent over outcomes, and that the preference 
relation z � z be maintained at least weakly even if we mix these outcomes z and z with a 
small probability of arbitrary acts f and f ′, respectively. Thus λ-continuity imposes a bound 
on the state sensitivity of preferences. In terms of expected utility representations, a preference 
� ∈ P(X) represented by μ ∈ �(X) and u : X × Z → R is λ-continuous if and only if

max
z,z′∈Z

∑
x∈X

(u(x, z) − u(x, z′))μ(x) > 0,

∑
x∈X

max
z,z′∈Z

(u(x, z) − u(x, z′))μ(x) ≤ 1 − λ

λ
max
z,z′∈Z

∑
x∈X

(u(x, z) − u(x, z′))μ(x).

Therefore, λ-continuity for sufficiently small λ is a weakening of the bounded utility assumption. 
To see this, if a preference is (z, z, B)-bounded, then with our normalization of utility indices, 
the left-hand side of the second inequality is bounded above by 2B , while the right-hand side is 
bounded below by (1 − λ)/λ. Thus the inequality holds as long as λ ≤ 1/(2B + 1).

Let Pλ(X) be the set of all λ-continuous preferences over F(X). A countable type space 
T = (Ti, πi)i∈I is λ-continuous if πi(ti) ∈ Pλ(T−i ) for every i ∈ I and ti ∈ Ti . We define the 
set of actions that are B-boundedly rationalizable for type ti , denoted by Ri,λ(ti), similarly to 
Ri,B(ti); we simply replace Pzi,zi ,Bi

by Pλ.
We can now state our strategic distinguishability results for λ-continuous preferences.

21 In fact, strategic distinguishability for ICR does not depend on the simplex profile, either. Indeed, take two types ti
and t ′

i
from (Ui)i∈I -based type spaces (Ti , μi)i∈I and (T ′

i
, μ′

i
)i∈I with the same hierarchy of beliefs over (Ui )i∈I . Then 

they have the same ICR with private state spaces (Ui)i∈I . By changing “coordinate systems”, we consider (U ′
i
)i∈I -based 

type spaces (Ti , μ′′
i
)i∈I and (T ′

i
, μ′′′

i
)i∈I . Then ti and t ′

i
have the same hierarchy of beliefs over (U ′

i
)i∈I , and hence have 

the same ICR with private state spaces (U ′
i
)i∈I as well although this ICR may be different from ICR with (Ui )i∈I .

22 The absence of complete indifference is a maintained assumption in the virtual and Bayesian implementation litera-
ture, e.g., Abreu and Sen (1991) and Duggan (1997) as well as Abreu and Matsushima (1992).
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Theorem 4. Fix λ ∈ (0, 1/2]. For every pair of countable and λ-continuous type spaces T =
(Ti, πi)i∈I and T ′ = (T ′

i , π
′
i )i∈I , every agent i ∈ I , and every pair of types ti ∈ Ti and t ′i ∈ T ′

i , 
the following three conditions are equivalent:

1. π̂i(ti; T ) = π̂i(t
′
i ; T ′);

2. Ri,λ(ti; T , M) ∩ Ri,λ(t
′
i ; T ′, M) 
= ∅ for every finite mechanism M;

3. Ei(ti; T , M) ∩ Ei(t
′
i ; T ′, M) 
= ∅ for every finite mechanism M.

The proof is in Appendix C. Note that our strategic distinguishability results hold for equi-
librium, λ-continuous rationalizability and everything in between. Thus, Lemma 2 of Abreu and 
Matsushima (1992) is a special case of Theorem 4 since every finite type space with no complete 
indifference over outcomes is λ-continuous with some λ > 0, and for this value of λ, their solu-
tion concept of iterated elimination of strictly dominated actions is in between equilibrium and 
λ-continuous rationalizability.23

5.5. Relaxing the λ-continuity assumption

A type of an agent with completely indifferent preferences cannot be distinguish from an agent 
with any other preferences, so the no complete indifference assumption must be maintained. But 
what can we say if we drop the bounded utility or λ-continuity assumption altogether? The 
following result will continue to be true.

Proposition 4. For every pair of countable type spaces T = (Ti, πi)i∈I and T ′ = (T ′
i , π

′
i )i∈I , 

every agent i ∈ I , and every pair of types ti ∈ Ti and t ′i ∈ T ′
i , we have

π̂i(ti;T ) = π̂i (t
′
i ;T ′) ⇒ Ei(ti;T ,M) ∩ Ei(t

′
i ;T ′,M) 
= ∅

for every finite mechanism M.

However, Proposition 2 does not extend without any a priori bound on utilities. Note that we 
are not asking whether two types can be strategically distinguished or not; we are asking whether 
strategic distinguishability is characterized merely by interdependent preference hierarchies. And 
the latter requires distinguishing two sets of types, each of which corresponds to an interdepen-
dent preference hierarchy. In Proposition 2, we constructed a finite mechanism, depending only 
on ε > 0 and simplex profile (Ui)i∈I , that can strategically distinguish two sets of types as long 
as the two sets correspond to two belief hierarchies over (Ui)i∈I that are ε apart from each other. 
Here, we will show that without the bounded utility or λ-continuity assumption, there is no finite 
mechanism that can strategically distinguish two sets of types that correspond to two interdepen-

23 There are two technical differences between AM’s formulation and ours. As noted in footnote 2, AM allow for all 
simple (i.e., finite support) lotteries over any (possibly infinite) set of outcomes. AM show that if we focus on finite 
(or “regular”) mechanisms, and rule out mechanisms that involve integer games, then a social choice function that is 
virtually implementable in mixed-strategy equilibrium must satisfy the measurability condition. Duggan (1997) provides 
an example of a social choice function that is not measurable, but can be exactly implemented in pure-strategy equilibrium 
by a finite mechanism. Serrano and Vohra (2010) extend Duggan’s argument and show that the social choice function is 
indeed exactly implementable in mixed-strategy equilibrium by an infinite mechanism.
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dent preference hierarchies with the same first order preference (even if they differ in the second 
and higher order preferences).24

Proposition 5. For every pair of interdependent preference hierarchies of finite types h =
(�1, �2, . . .), h

′ = (�′
1, �′

2, . . .) such that �1 = �′
1, every agent i ∈ I , and every finite mech-

anism M = ((Mi)i∈I , O), there exist a pair of finite type spaces T = (Ti, μi, ui)i∈I and T ′ =
(T ′

i , μ
′
i , u

′
i )i∈I and a pair of types ti ∈ Ti and t ′i ∈ T ′

i such that π̂i (ti;T ) = h, π̂i

(
t ′i ;T ′) = h′, 

and Ei(ti; T , M) = Ei(t
′
i ; T ′, M).

The proof is in Appendix C. In what follows, we use an example to illustrate the difficulty of 
strategically distinguishing higher order preferences without restrictions.

In what follows, we use an example to illustrate why a mechanism like the one constructed in 
Section 4.2 cannot strategically distinguish types with distinct hierarchies of interdependent pref-
erences. Take the conditional altruism example, and consider a mechanism with two messages 0
and 1 for each agent and the outcome being in the form of

O(m1,m2)(z) = (1 − ε)O1(m1)(z) + εO2(m1,m2)(z)

with ε ≥ 0, where O1 is to solicit agent 1’s report about his first order preference, whereas O2
is to solicit both agents’ reports about their higher order preferences. To fix ideas, suppose that 
O1(m1 = 0) gives the prize to nobody and agent 1 with probability 1/2 each, and O1(m1 = 1)

gives the prize to agent 2; O2(m1, m2) gives the prize to agents 1 and 2 with probability m1m2/2, 
and to nobody with the remaining probability 1 − m1m2. Consider a type space, where each 
agent i has two possible types 0 and 1, each type believes that the opponent’s type is 0 or 1 with 
probability 1/2, and payoff parameters (the payoff from the opponent getting the prize) are given 
by

t2 = 0 1
t1 = 0 1 + v,1 + v 1 − v,1

1 1,1 − v 1,1

with v ∈ R. Note that all types have the same expected value of the payoff parameter (1 +v)/2 +
(1 −v)/2 = 1, and hence have the same interdependent preference hierarchy as the truly altruistic 
type with complete information, independently of v.

In this case, if ε = 0, then agent 1 has an incentive to report m1 = 1 (as a dominant action) 
according to his first order preference. But since there is no interaction term between m1 and 
m2, no information about higher order preferences can be revealed in equilibrium actions. In 
contrast, if ε > 0, then for sufficiently large v, type 0 of agent 1 no longer has a dominant action, 
and indeed, the strategy profile of reporting mi = ti becomes an equilibrium. In sum, there is no 
ε ≥ 0 that keeps agent 1’s incentive to report his first order preference truthfully and yet solicits 
higher order preferences from both agents.

Note that this example hinges crucially on the difference between us and AM: our exercise of 
strategic distinguishability (Theorems 1 and 2) is to construct a mechanism independently of an 
underlying type space, whereas AM fix a finite type space first and then construct a mechanism. 
This example also illustrates a trade-off between ε and v. There is no ε > 0 that keeps m1 = 1
a dominant action for agent 1 independently of v. But if we knew a bound on v, then we could 

24 Proposition 5 is stated and proved for finite types, which suffices to show the impossibility of strategic distinguisha-
bility, but would continue to hold with countable types.
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choose ε small enough (in the magnitude of 1/|v|) so that m1 = 1 is a dominant action for 
agent 1.

6. Discussion

6.1. Strategic equivalence

For any interim solution concept, we say that two types are strategically equivalent if they 
have the same set of solutions for every finite mechanism. It follows from Proposition 1 and 
Theorem 1 that hierarchies of beliefs over (Ui)i∈I characterize strategic equivalence for ICR. 
However, the corresponding result does not hold for equilibrium even if we restrict attention to 
countable type spaces. It is well known from the setting with common certainty of conditional 
preferences that solution concepts such as equilibrium and interim independent rationalizability 
depend on redundant types. See Dekel et al. (2007), Ely and Peski (2006) and Sadzik (2010).

6.2. Separating beliefs from payoffs

Our approach integrates the treatment of payoffs (or utility indices that represent conditional 
preferences over lotteries) with beliefs and higher order beliefs about those payoffs. But the 
standard approach in the literature has been to discuss the two separately. In particular, as we 
discussed in Section 2, an alternative construction is to first identify a general space of interde-
pendent payoff types, such as that of Gul and Pesendorfer (2016), and then allow for all possible 
beliefs and higher order beliefs over those payoff types. But this construction gives a space of 
interdependent types different from our space of strategically distinguishable types. In particu-
lar, as we discussed in Section 2, this alternative construction is not tight because it will label 
types differently even if they differ only in what their conditional preferences would be given 
zero probability events. On the other hand, it is not rich enough because it does not allow con-
ditional preferences to depend on others’ beliefs. For example, I might be more altruistic if I 
believe that you believe that I am altruistic. This cannot arise in the Gul and Pesendorfer (2016)
construction, where payoff types depend only on others’ payoff types, not their beliefs. Thus, 
we allow conditional preferences to depend on beliefs, as in the “psychological games” litera-
ture of Geanakoplos et al. (1989) and Battigalli and Dufwenberg (2009). However, preferences 
depend only on other agents’ beliefs about others’ types and not – as in the psychological games 
literature – on beliefs about actions.25

However, even though our space is quite different from this alternative construction, it still 
makes sense to ask if and how we can distinguish between “payoff types” and “belief types” in a 
natural way in our space. Just as beliefs cannot be pinned down in (single person) expected utility 
representations of preferences unless we fix a numéraire, there is indeterminacy in beliefs in our 
construction based on the choice of representations of the extreme preferences Ui . But particular 
applications may suggest a numéraire over which the modeler wishes to treat utility as state 
independent, which will pin down the representation. A type of agent i can then be characterized 
by a belief over others’ types, and conditional preferences over lotteries given others’ types. We 
can use the separation to interpret existing works.

25 Such beliefs can be captured as “characteristics” in Gul and Pesendorfer (2016).
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6.3. Operational meaning and revealed preference

Two types are strategically distinguishable if and only if there exists a finite mechanism where 
they are guaranteed to behave differently. No additional information is required to identify the 
interdependent hierarchies. As we discussed in Sections 5.1 and 5.2, if mechanisms could de-
pend on some external states, it would be possible to learn about agents’ beliefs are higher order 
beliefs about external states. If mechanisms cannot depend on any additional data, the interdepen-
dent hierarchies are all that can be operationally identified, and we cannot distinguish between 
psychological or informational origins of the interdependence.

Classical single person revealed preference theory characterizes when a set of choice functions 
are consistent with rational choice (Afriat, 1967), with the weak axiom of revealed preference 
(WARP) being the key restriction on choice rules. If, in addition to standard rationality assump-
tions, we looked at choices over lotteries and added the independence assumption, we would 
obtain more restrictions. A primitive single person revealed preference question would then be 
if you can tell the difference between two different expected utility preferences over lotteries. 
A standard argument says that we can construct a pair of lotteries such that one preference will 
lead to one strict ordering, and the other preference will lead to the opposite strict ordering. 
Our strategic distinguishability question is a many person analogue of this revealed preference 
question.26

6.4. The expected utility assumption

We maintained the assumption of expected utility maximization, but dispensed with mono-
tonicity to incorporate the interdependence of preferences we want to capture. Epstein and Wang
(1996) construct a universal type space of non-expected utility preferences, incorporating non-
expected utility preferences such as ambiguity aversion, but maintaining monotonicity as well as 
additional regularity conditions. Di Tillio (2008) allows general preferences, and thus does not 
require monotonicity or independence, but restricts attention to preferences over finite outcomes 
at every order of the hierarchy.27
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Appendix A. Proofs in Section 4

A.1. Proof of Lemma 1

Suppose not. Then there exists ε > 0 such that for every n ∈ N, there exist μn, mn, m′
n ∈

�(U × X) with d�(μn, mn) ≤ 1/n and d�(μn, m′
n) > ε, measurable space 
n, perturbed out-

come function On : M0 × X × 
n → �(Z) with ‖On(·, ·, ω) − O0‖ ≤ 1/n for every ω ∈ 
n, 
μ′

n ∈ �(U × X × X′ × 
n) with X′ = X such that μ′
n

(
U × {

(x, x′) | d(x, x′) ≤ δ
}× 
n

)= 1, 
mrgU×Xμ′

n = μn, and mrgU×X′×
μ′
n weakly prefers On(m

′
n, ·, ·) to On(mn, ·, ·). Since X is a 

compact metric space, by taking a subsequence if necessary, we can find μ∗, m′,∗ ∈ �(U × X)

such that μn → μ∗ and m′
n → m′,∗ as n → ∞. Note that mn → μ∗ as n → ∞, and μ∗ 
= m′,∗. 

Let

u∗ =
∫ ∑

z

u(z)O0(μ∗, x)(z)dμ∗(u, x).

Claim 1. We have

lim
n→∞

∫ ∑
z

u(z)O0(mn, x)(z)dμn(u, x) = u∗,

lim sup
n→∞

∫ ∑
z

u(z)O0(m′
n, x)(z)dμn(u, x) < u∗.

Proof of Claim 1. The claim follows from showing that

lim
n→∞

∫ ∑
z

u(z)Cmn(fk, fl)(x)(z)dμn(u, x) =
∫ ∑

z

u(z)Cμ∗(fk, fl)(x)(z)dμ∗(u, x),

lim sup
n→∞

∫ ∑
z

u(z)Cm′
n
(fk, fl)(x)(z)dμn(u, x) ≤

∫ ∑
z

u(z)Cμ∗(fk, fl)(x)(z)dμ∗(u, x),

for each k, l, and that the second inequality holds with strict inequality for some k, l. The first 
equality and the second weak inequality follow from the standard revealed preference argument. 
To show the strict inequality, since μ∗ 
= m′,∗ and F ⊂ Fc(X) is dense in the sup norm, there exist 
k, l such that μ∗ strictly prefers fk to fl while m′,∗ strictly prefers fl to fk . Since m′

n strictly 
prefers fl to fk for sufficiently large n, we have:

lim
n→∞

∫ ∑
z

u(z)Cm′
n
(fk, fl)(x)(z)dμn(u, x)

= lim
n→∞

∫ ∑
z

u(z)fl(x)(z)dμn(u, x)

=
∫ ∑

z

u(z)fl(x)(z)dμ∗(u, x)

<

∫ ∑
z

u(z)fk(x)(z)dμ∗(u, x)

=
∫ ∑

z

u(z)Cμ∗(fk, fl)(x)(z)dμ∗(u, x).

which establishes the claim. �
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Claim 2. We have

lim
n→∞

(∫ ∑
z

u(z)On(m,x′,ω)(z)dμ′
n(u, x, x′,ω)

−
∫ ∑

z

u(z)O0(m,x)(z)dμn(u, x)

)
= 0

and the convergence is uniform in m ∈ M0.

Proof of Claim 2. Note that∣∣∣∣∣
∫ ∑

z

u(z)On(m,x′,ω)(z)dμ′
n(u, x, x′,ω) −

∫ ∑
z

u(z)O0(m,x)(z)dμn(u, x)

∣∣∣∣∣
≤
∣∣∣∣∣
∫ ∑

z

u(z)On(m,x′,ω)(z)dμ′
n(u, x, x′,ω)

−
∫ ∑

z

u(z)O0(m,x′)(z)dμ′
n(u, x, x′,ω)

∣∣∣∣∣
+
∣∣∣∣∣
∫ ∑

z

u(z)O0(m,x′)(z)dμ′
n(u, x, x′,ω) −

∫ ∑
z

u(z)O0(m,x)(z)dμn(u, x)

∣∣∣∣∣ .
The first term is bounded above by (1/n) maxu,z,z′ |u(z) −u(z′)| since ‖On(·, ·, ω) −O0‖ ≤ 1/n

for every ω ∈ 
n.
To show that the second term converges to 0 uniformly in m, it is enough to show that

lim
n→∞

(∫ ∑
z

u(z)f (x′)(z)dμ′
n(u, x, x′,ω) −

∫ ∑
z

u(z)f (x)(z)dμn(u, x)

)
= 0

for each f ∈ Fc(X). Since X is a compact metric space, f is uniformly continuous. Therefore, for 
every η > 0, there exists N such that maxz

∣∣f (x)(z) − f (x′)(z)
∣∣< η whenever d(x, x′) ≤ 1/N . 

For every n ≥ N , we have∣∣∣∣∣
∫ ∑

z

u(z)f (x′)(z)dμ′
n(u, x, x′,ω) −

∫ ∑
z

u(z)f (x)(z)dμn(u, x)

∣∣∣∣∣
≤
∣∣∣∣∣
∫ ∑

z

u(z)f (x′)(z)dμ′
n(u, x, x′,ω) −

∫ ∑
z

u(z)f (x)(z)dμ′
n(u, x, x′,ω)

∣∣∣∣∣
+
∣∣∣∣∣
∫ ∑

z

u(z)f (x)(z)dμ′
n(u, x, x′,ω) −

∫ ∑
z

u(z)f (x)(z)dμn(u, x)

∣∣∣∣∣ .
The first term is bounded above by η maxu,z,z′ |u(z) − u(z′)|; the second term is equal to zero 
since mrgU×Xμ′

n = μn. �
We can now complete the proof of Lemma 1 since Claims 1 and 2 contradict the assumption 

that mrgU×X′×
μ′
n weakly prefers On(m

′
n, ·, ·) to On(mn, ·, ·).
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A.2. Proof of Lemma 2

The proof is by induction on n. Suppose that for each k ≤ n −1, mi ∈ Rn−1
i (ti; T , M) implies 

di,k(μ̂i,k(ti), mi,k) ≤ εk ≤ εn−1 for every agent i ∈ I and every type ti ∈ Ti . Suppose that there 
exists m∗

i ∈ Rn
i (ti; T , M) such that di,n(μ̂i,n(ti), m∗

i,n) > εn. Then there exists νi ∈ �(M−i ×
Ui × T−i ) such that νi({(m−i , ui, t−i ) | m−i ∈ Rn−1

−i (t−i; T , M)}) = 1, mrgUi×T−i
νi = μi(ti), 

and νi weakly prefers O(m∗
i , ·) to O(m′

i , ·) for every m′
i ∈ Mi .

Collect all the terms in O that depend on mi,n, and define Oi,n : Mi,n × M−i → �(Z) by

Oi,n(mi,n,m−i )(z)

= α

(
O0

i,n(mi,n,m−i,1, . . . ,m−i,n−1)(z)

+
∑

j∈I\{i}

N∑
k=n+1

δk−nO0
j,k(mj,k,m−j,1, . . . ,m−j,k−1)(z)

)
,

where mi,k = m∗
i,k for k 
= n when they appear in the second term, and

α = 1/

⎛⎝1 + (|I | − 1)

N∑
k=n+1

δk−n

⎞⎠
is a normalization constant. Let 
 =∏N

k=n M−i,k . Since we chose sufficiently small δ, we have 
‖Oi,n(·, ·, ω) − O0

i,n‖ ≤ ε0 ≤ εn−1 for every ω ∈ 
. Let ν∗
i ∈ �(M−i × Ui × H−i,n−1) be such 

that

ν∗
i (E) = νi({(m−i , ui, t−i ) | (m−i , ui, (μ̂j,k(tj ))j 
=i,1≤k≤n−1) ∈ E})

for each measurable E ⊆ M−i × Ui × H−i,n−1. By the induction hypothesis,

ν∗
i

({
(m−i , ui, t−i,1, . . . , t−i,n−1)

∣∣∣∣ max
j 
=i,1≤k≤n−1

dj,k(tj,k,mj,k) ≤ εn−1

})
= 1.

We also have mrgUi×H−i,n−1
ν∗
i = μ̂i,n(ti). Thus, we have mrgM−i×Ui

ν∗
i ∈ �εn−1,μ̂i,n(ti )(M−i ×

Ui). Since Mi,n is εn−1-dense in �(Ui × H−i,n−1), there exists m′
i,n ∈ Mi,n such that 

di,n(μ̂i,n(ti), m′
i,n) ≤ εn−1. By Lemma 1, mrgM−i×Ui

ν∗
i strictly prefers Oi,n(m

′
i,n, ·) to

Oi,n(m
∗
i,n, ·), and thus mrgM−i×Ui

ν∗
i strictly prefers O(m′

i,n, m
∗
i,−n, ·) to O∗(m∗

i , ·). This is a 
contradiction.

A.3. Proof of Proposition 3

Fix any equilibrium σ̂ = (̂σi)i∈I of Bayesian game (T̂ , M). Let σ = (σi)i∈I be a profile of 
mappings σi : Ti → �(Mi) given by σi = σ̂i ◦ μ̂i . For every i ∈ I , since ̂σi and μ̂i are both mea-
surable, σi is also measurable. Also, for every i ∈ I and every mi, m′

i ∈ Mi with σi(ti)(mi) > 0, 
we have
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∫
Ui×T−i

∑
m−i∈M−i

∑
z∈Z

ui(z)(O(mi,m−i )(z)

− O(m′
i ,m−i )(z))

⎛⎝∏
j 
=i

σj (tj )(mj )

⎞⎠μi(ti)(dui, dt−i )

=
∫

Ui×T−i

∑
m−i∈M−i

∑
z∈Z

ui(z)(O(mi,m−i )(z)

− O(m′
i ,m−i )(z))

⎛⎝∏
j 
=i

σ̂j (μ̂j (tj ))(mj )

⎞⎠μi(ti)(dui, dt−i )

=
∫

Ui×T̂−i

∑
m−i∈M−i

∑
z∈Z

ui(z)(O(mi,m−i )(z)

− O(m′
i ,m−i )(z))

⎛⎝∏
j 
=i

σ̂j (t̂j )(mj )

⎞⎠μ∗
i (μ̂i(ti ))(dui, dt̂−i )

≥ 0,

where the second equality follows since (μ̂i)i∈I is belief-preserving, and the last inequality fol-
lows since ̂σi(μ̂i(ti ))(mi) = σi(ti)(mi) > 0 and ̂σ is an equilibrium of (T̂ , M). Therefore, σ is 
an equilibrium of Bayesian game (T , M).

Appendix B. Interdependent preferences and λ-continuity

We present a formal and self-contained treatment of general interdependent expected utility 
preferences and the λ-continuity restriction. This treatment will be used in Appendix C.

One way to define state-dependent expected utility preferences for a general measurable space 
X is to have a preference � over acts over X represented by a belief about states μ ∈ �(X) and 
a μ-integrable state-dependent utility index u : X × Z →R as follows:

f � f ′ ⇔
∫
X

∑
z∈Z

u(x, z)(f (x)(z) − f ′(x)(z))μ(dx) ≥ 0.

Instead, we use a finite signed measure over X × Z to represent � as

f � f ′ ⇔
∫

X×Z

(f (x)(z) − f ′(x)(z))ν(dx, dz) ≥ 0.

The representation by a finite signed measure ν is formally equivalent to, via the Radon–
Nikodym theorem, but more convenient than the representation by a belief-utility pair (μ, u). 
For example, u is meaningful only up to μ-null events, and hence multiple belief-utility pairs 
can represent the same preference. Indeed, although multiple signed measures can also represent 
the same preference, it is not difficult to pick a particular normalization. For example, if � is not 
completely indifferent over all outcomes, then we can choose z, z ∈ Z such that z � z and repre-
sent � uniquely by a signed measure ν over X ×Z such that ν(X ×{z}) = 1 and ν(E ×{z}) = 0
for every measurable E ⊆ X.
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In what follows, we use state-dependent expected utility preferences, described above, to de-
fine type spaces of interdependent preferences, interdependent preference hierarchies, and the 
universal type space. Along the way, we introduce various notions directly based on preferences 
so that we can guarantee easily that these notions are well defined and independent of represen-
tations and normalizations. But we also rephrase these notions, whenever possible, in terms of 
signed-measure representations to ease the reader into possibly unfamiliar notations.

Our exercise here is largely guided by the analogy between subjective beliefs and prefer-
ences, originated by Savage (1954) in single-agent environments and extended by Epstein and 
Wang (1996), Di Tillio (2008) and Ganguli et al. (2016) to multi-agent environments. At a tech-
nical level, our argument relies on mathematical similarities between probability measures and 
signed measures. At some subtle level, however, we need to understand a “patchwork” of possi-
bly multiple signed-measure representations of a single preference, which we will discuss further 
in Appendix B.3.

B.1. State-dependent expected utility preferences

For a measurable space X, let ca(X) be the set of all finite signed measures over X. For 
ν ∈ ca(X), ‖ν‖ = supmeasurable E,E′⊆X(ν(E) − ν(E′)) < ∞ denotes the total variation of ν; |ν|
denotes the total variation measure on X, defined by |ν|(E) = ‖ν(· ∩ E)‖ for each measurable 
E ⊆ X. If X is a compact metric space, ca(X) is the dual of the set of continuous functions with 
the sup norm (the Riesz representation theorem).

Recall that F (X) denotes the set of all acts over X, i.e., all measurable functions f : X →
� (Z). If X is a compact metric space, Fc (X) ⊆ F (X) denotes the set of all continuous acts 
over X.

Let P(X) be the set of all state-dependent expected utility preferences over F(X) represented 
by ν ∈ ca(X × Z) as follows:

f � f ′ ⇔
∫

X×Z

(f (x)(z) − f ′(x)(z))ν(dx, dz) ≥ 0.

We say that a preference � ∈ P(X) is certain of measurable E ⊆ X if X \ E is Savage-null 
with respect to �. For a preference � ∈ P(X) represented by ν ∈ ca(X × Z), � is certain of 
measurable E ⊆ X if and only if ν(E′ × {z}) = ν(E′ × {z′}) for every measurable E′ ⊆ X \ E

and every z, z′ ∈ Z.
We endow P(X) with the σ -algebra generated by {� ∈ P(X) | f � f ′} for each f, f ′ ∈

F(X). If X is a compact metric space, we also endow P(X) with the topology generated by 
{� ∈ P(X) | f � f ′} for each f, f ′ ∈ Fc(X); in this case, the Borel σ -algebra on P(X) coincides 
with the original σ -algebra on P(X).28

Given two measurable spaces X and Y , a measurable mapping ϕ : X → Y and a preference 
� ∈ P(X), we can define the induced preference ϕP (�) as the preference over F(Y ) such that, 

28 Since Fc(X) ⊆ F(X), every Borel-measurable subset of P(X) is measurable. Conversely, let D = {E ⊆ X | E

is Borel-measurable in X, and {� ∈ P(X) | yEy′ � y′′
Ey′′′} is Borel-measurable in P(X) for every y, y′, y′′, y′′′ ∈

�(Z)}, where yEy′ denotes the act over X that takes values y on E and y′ on X \ E. Then D is a Dynkin system, and 
contains all closed subsets of X by Urysohn’s lemma. Since the family of all closed subsets of X is a π -system, by the 
π -λ theorem, D coincides with the Borel σ -algebra on X. Hence {� ∈ P(X) | f � f ′} is Borel-measurable in P(X) for 
all acts f and f ′ in the form of yEy′ with Borel-measurable E ⊆ X. This extends to all simple acts and to all acts in the 
usual way.
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for every f, f ′ ∈ F(Y ), it weakly prefers f to f ′ if and only if � weakly prefers f ◦ ϕ to 
f ′ ◦ ϕ. (Note that f ◦ ϕ, f ′ ◦ ϕ ∈ F(X).) It is easy to show that if � ∈ P(X) is represented 
by a signed measure ν ∈ ca(X × Z), then the induced preference ϕP (�) is represented by the 
induced signed measure ν′ ∈ ca(Y × Z), where ν′(E) = ν({(x, z) ∈ X × Z | (ϕ(x), z) ∈ E}) for 
each measurable E ⊆ Y × Z. We thus have ϕP (�) ∈ P(Y ). Note that ϕP : P(X) → P(Y ) is 
measurable; moreover, if X and Y are compact metric spaces and ϕ : X → Y is continuous, then 
ϕP : P(X) → P(Y ) is also continuous.

The “marginal” is an important example of induced preferences. Given a product measurable 
space X ×Y and a preference � ∈ P(X ×Y), the projection mapping prX : X ×Y → X induces 
the marginal, denoted by mrgX := (prX)P : P(X × Y) → P(X). In other words, given that we 
identify F(X) as a subset of F(X × Y), where outcomes do not depend on the Y -coordinate, we 
define the marginal of � ∈ P(X × Y) on X, mrgX� ∈ P(X), as the restriction of � to F(X). 
This notion corresponds to the notion of marginal of a probability or signed measure. Indeed, 
if � is represented by a signed measure ν ∈ ca(X × Y × Z), then mrgX� is represented by the 
marginal of ν on X × Z, mrgX×Zν ∈ ca(X × Z), where (mrgX×Zν)(E × {z}) = ν(E × Y × {z})
for each measurable E ⊆ X and each z ∈ Z.

For a more specific example, consider a measurable space X, an arbitrary singleton set {∗}
and a preference � ∈ P(X). Then the constant mapping from X to {∗} induces the restriction 
of the preference � to lotteries. If ν ∈ ca(X × Z) represents �, then mrgZν ∈ ca(Z) ∼= R

Z is 
a von Neumann–Morgenstern utility index that represents the restriction of the preference � to 
lotteries.

B.2. Type spaces and the universal type space

A type space is given by T = (Ti, πi)i∈I , where, for each i ∈ I , Ti is a measurable space of 
agent i’s types, and πi : Ti → P(T−i ) is a measurable mapping that maps his types to prefer-
ences.

Let H0 = {∗} (an arbitrary singleton set) and Hn = Hn−1 ×P(H
|I |−1
n−1 ) =∏n−1

k=0 P(H
|I |−1
k ) for 

each n ≥ 1. Let H =∏∞
n=0 P(H

|I |−1
n ) be the set of all hierarchies of interdependent preferences.

Given a type space T = (Ti, πi)i∈I , we define the interdependent preference hierarchy of a 
type ti ∈ Ti , π̂i(ti ) = (π̂i,1(ti), π̂i,2(ti), . . .), as follows: π̂i,1(ti) is the restriction of the preference 
πi(ti) to lotteries, and for each n ≥ 2, π̂i,n(ti) is the preference of type ti over acts over the 
opponents’ first (n − 1) order preferences, i.e., π̂i,n(ti) = (π̂−i,1, . . . , π̂−i,n−1)

P (πi(ti)).29 It is 

29 Recall the notion of induced preferences. For each ti ∈ Ti , we define π̂i,1(ti ) ∈ P({∗}) by

π̂i,1(ti ) weakly prefers y to y′ ⇔ πi(ti ) weakly prefers y to y′

for each y, y′ ∈ F({∗}) = �(Z).

For each n ≥ 2 and each f ∈ F(H
|I |−1
n−1 ), we have f ◦ (π̂−i,1, . . . , π̂−i,n−1) ∈ F(T−i ) defined by

(f ◦ (π̂−i,1, . . . , π̂−i,n−1))(t−i ) = f ((π̂j,k(tj ))j 
=i,1≤k≤n−1)

for each t−i ∈ T−i . Thus, for each ti ∈ Ti , we define π̂i,n(ti ) ∈ P(H
|I |−1
n−1 ) by

π̂i,n(ti ) weakly prefers f to f ′ ⇔ πi(ti ) weakly prefers f ◦ (π̂−i,1, . . . , π̂−i,n−1) to f ′ ◦ (π̂−i,1, . . . , π̂−i,n−1)

for each f, f ′ ∈ F(H
|I |−1

).

n−1
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easy to show inductively that π̂i,n : Ti → P(H
|I |−1
n−1 ) is measurable for every n ≥ 1, and hence 

π̂i : Ti →∏∞
n=0 P(H

|I |−1
n ) is also measurable.

Following Heifetz and Samet (1998), we define T ∗
i as the set of all interdependent preference 

hierarchies t∗i ∈ H such that t∗i = π̂i (ti) for some type space T = (Ti, πi)i∈I and some type 
ti ∈ Ti . We define π∗

i : T ∗
i → P(T ∗−i ) by

π∗
i (t∗i ) = π̂P−i (πi(ti)),

where ti ∈ Ti in some type space T = (Ti, πi)i∈I such that t∗i = π̂i(ti ).30 We can show that 
π∗

i is well defined (i.e., independent of the particular type space T and particular type ti ) and 
measurable.31 We thus have the universal type space T ∗ = (T ∗

i , π∗
i )i∈I . By construction, the 

profile (π̂i)i∈I of mappings π̂i : Ti → T ∗
i is a preference-preserving morphism, also known as a 

type morphism in Heifetz and Samet (1998), from T to T ∗ in the following sense.32

Proposition 6. For every type space T = (Ti, πi)i∈I and every agent i ∈ I , we have

π∗
i ◦ π̂i = π̂P−i ◦ πi,

i.e., for every type ti ∈ Ti and every f, f ′ ∈ F(T ∗−i ), π
∗
i (π̂i (ti )) weakly prefers f to f ′ if and only 

if πi(ti) weakly prefers f ◦ π̂−i to f ′ ◦ π̂−i .

B.3. Compactness and metrizability of Pλ(X)

Let P0(X) be the set of preferences in P(X) that are not completely indifferent over all out-
comes. By excluding the preference that is completely indifferent over F(X), we can show that 
P0(X) is Hausdorff if X is a compact metric space.33

Lemma 3. If X is a compact metric space, then P0(X) is Hausdorff.

30 For each f ∈ F(T ∗−i
), we have f ◦ π̂−i ∈ F(T−i ) defined by

(f ◦ π̂−i )(t−i ) = f ((π̂j (tj ))j 
=i )

for each t−i ∈ T−i . Then we have π∗
i
(t∗

i
) ∈ P(T ∗−i

) defined by

π∗
i (t∗i ) weakly prefers f to f ′ ⇔ πi(ti ) weakly prefers f ◦ π̂−i to f ′ ◦ π̂−i

for each f, f ′ ∈ F(T ∗−i
).

31 For each n ≥ 0, let pr−i,n : T ∗−i
→ H

|I |−1
n be the projection mapping. Fix any f, f ′ ∈ F(H

|I |−1
n ). For each t∗

i
=

(�1, �2, . . .) ∈ T ∗
i

, there exist a type space T = (Ti , πi)i∈I and a type ti ∈ Ti such that t∗
i

= π̂i (ti ). Then we have

π∗
i (t∗i ) weakly prefers f ◦ pr−i,n to f ′ ◦ pr−i,n ⇔ πi(ti ) weakly prefers f ◦ π̂P−i,n to f ′ ◦ π̂P−i,n ⇔ �n+1

weakly prefers f to f ′.

Thus, {t∗
i

∈ T ∗
i

| π∗
i
(t∗

i
) weakly prefers f ◦ pr−i,n to f ′ ◦ pr−i,n} is well defined and measurable. Since this is true for 

every n and every f, f ′ ∈ F(H
|I |−1
n ), {t∗

i
∈ T ∗

i
| π∗

i
(t∗

i
) weakly prefers f to f ′} is well defined and measurable for 

every f, f ′ ∈ F(T ∗−i
), and hence π∗

i
: T ∗

i
→ P(T ∗−i

) is well defined and measurable.
32 In passing, we note that every preference-preserving morphism preserves interdependent preference hierarchies, and 
that (π̂i )i∈I is the unique preference-preserving morphism from T to T ∗.
33 Indeed, Lemma 3 holds as long as we exclude the preference that is completely indifferent over F(X).
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Proof. Pick any pair of preferences �, �′ ∈ P0(X) such that � 
= �′. Then there exist f, f ′ ∈
F(X) such that � and �′ have different preferences between f and f ′. Since neither � nor �′
is completely indifferent, we can assume without loss of generality that f � f ′ and f ′ �′ f .34

Let ν, ν′ ∈ ca(X × Z) be finite signed measures that represent � and �′, respectively. 
Applying Lusin’s theorem to (X × Z, |ν| + |ν ′|), we can assume without loss of generality 
that f, f ′ ∈ Fc(X). Thus, � and �′ are separated by two disjoint open sets generated by f
and f ′. �

We define λ-continuity as follows.

Definition 1. For a given λ ∈ (0, 1/2], we say that a preference � is λ-continuous if there exist 
z, z ∈ Z such that z � z and (1 − λ) z + λf � (1 − λ) z + λf ′ for every f, f ′ ∈ F (X).

If X is a compact metric space, then by Lusin’s theorem, we can require (1 − λ)z + λf �
(1 − λ) z + λf ′ only for all f, f ′ ∈ Fc (X) without loss of generality.

Let Pz,z,λ(X) be the set of all λ-continuous preferences for a fixed pair of outcomes z, z ∈ Z. 
Let Pλ(X) =⋃

z,z∈Z Pz,z,λ(X) be the set of all λ-continuous preferences.
Note that λ-continuity is preserved for induced preferences. That is, given each measurable 

mapping ϕ : X → Y , if we have � ∈ Pz,z,λ(X), then we also have ϕP (�) ∈ Pz,z,λ(Y ); if we have 
� ∈ Pλ(X), then we also have ϕP (�) ∈ Pλ(Y ).

Fix a pair of outcomes z, z ∈ Z and λ ∈ (0, 1/2]. Then each � ∈ Pz,z,λ(X) is uniquely repre-
sented by ν ∈ caz,z,λ(X × Z), where

caz,z,λ(X × Z) =

⎧⎪⎪⎨⎪⎪⎩ν ∈ ca(X × Z)

∣∣∣∣∣∣∣∣
ν(X × {z}) = 1
ν(E × {z}) = 0 for every measurable E ⊆ X∫
X×Z

(f (x)(z) − f ′(x)(z))ν(dx, dz) ≤ (1 − λ)/λ

for every f,f ′ ∈ F(X)

⎫⎪⎪⎬⎪⎪⎭ .

In words, we normalize a signed-measure representation by first shifting the conditional expected 
utility of getting z given each event to 0, and then scaling the expected utility of getting z to 1. 
The condition that 

∫
X×Z

(f (x)(z) − f ′(x)(z))ν(dx, dz) ≤ (1 − λ)/λ for every f, f ′ ∈ F(X)

is a rewriting of the definition of λ-continuity in terms of signed-measure representations. Via 
this normalization, Pz,z,λ(X) is measurably isomorphic to caz,z,λ(X × Z); furthermore, if X
is a compact metric space, then Pz,z,λ(X) is topologically isomorphic (i.e., homeomorphic) to 
caz,z,λ(X × Z) endowed with the weak-* topology.

Note that this normalization is preserved for induced preferences. That is, given each mea-
surable mapping ϕ : X → Y , if ν belongs to caz,z,λ(X × Z), then the induced signed measure 
ν ◦ (ϕ−1, idZ) belongs to caz,z,λ(Y × Z) with the same z, z ∈ Z and λ ∈ (0, 1/2]. Therefore, if 
� ∈ Pz,z,λ(X) is represented by a normalized signed measure ν ∈ caz,z,λ(X × Z), then the in-
duced preference ϕP (�) ∈ Pz,z,λ(Y ) is represented by the already normalized signed measure 
ν ◦ (ϕ−1, idZ) ∈ caz,z,λ(Y × Z).

Since each measurable function g : X × (Z \ {z}) → R with ‖g‖ ≤ 1/(|Z| − 1) in the sup 
norm can be written as g(x, z) = f (x)(z) − f ′(x)(z) with some f, f ′ ∈ F(X), we have ‖ν‖ ≤
(|Z| − 1)(1 − λ)/λ for every ν ∈ caz,z,λ(X × Z). Conversely, since ‖f − f ′‖ ≤ 1 in the sup 

34 For example, if f ∼ f ′ and f ′ �′ f , then pick f ′′, f ′′′ ∈ F(X) such that f ′′ � f ′′′. Then by slightly mixing f with 
f ′′ and f ′ with f ′′′, we can make the first preference relation strict while maintaining the second preference relation.
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norm for every f, f ′ ∈ F(X), we have ν ∈ caz,z,λ(X × Z) for every ν ∈ ca(X × Z) such that 
ν(X × {z}) = 1, ν(E × {z}) = 0 for every measurable E ⊆ X, and ‖ν‖ ≤ (1 − λ)/λ.

Lemma 4. If X is a compact metric space, then Pz,z,λ(X) is compact and metrizable for every 
z, z ∈ Z and every λ ∈ (0, 1/2].

Proof. By the remark after Definition 1, Pz,z,λ(X) is closed in P0(X). Also, caz,z,λ(X × Z)

can be seen as a subset of the ball {ν ∈ ca(X × (Z \ {z})) | ‖ν‖ ≤ (|Z| − 1)(1 − λ)/λ}, which 
is weak-* compact by the Riesz representation theorem and Alaoglu’s theorem, and weak-* 
metrizable by the Stone–Weierstrass theorem. Thus, caz,z,λ(X × Z) is compact and metrizable, 
and so is Pz,z,λ(X). �

Note that Lemma 4 relies on λ-continuity with λ ∈ (0, 1/2].
Recall that Pλ(X) =⋃

z,z∈Z Pz,z,λ(X). If |Z| ≥ 3, then this union is not disjoint, i.e., a given 
preference � ∈ Pλ(X) may belong to Pz,z,λ(X) with multiple pairs of (z, z). In this case, we do 
not choose any specific pair as “canonical”. Instead, we view Pλ(X) as a “patchwork” of finitely 
many Pz,z,λ(X), each of which is homeomorphic to caz,z,λ(X × Z).

Proposition 7. If X is a compact metric space, then Pλ(X) is compact and metrizable for every 
λ ∈ (0, 1/2].

Proof. By Lemmas 3 and 4, Pλ(X) is a finite union of compact and metrizable subspaces 
Pz,z,λ(X), and hence Pλ(X) is compact and metrizable. (The metrizability follows from the 
Nagata–Smirnov metrization theorem. See Nagata (1985, Theorem 6.12).) �
B.4. λ-continuous type spaces

Fix λ ∈ (0, 1/2]. We say that a type space T = (Ti, πi)i∈I is λ-continuous if πi(ti) ∈ Pλ(T−i )

for every i ∈ I and every ti ∈ Ti . Note that in a λ-continuous type space, each type has a 
λ-continuous preference and common certainty of λ-continuous preferences. Moreover, the value 
of λ is fixed uniformly in types.

Let Hλ,0 = {∗}, Hλ,n = Hλ,n−1 × Pλ(H
|I |−1
λ,n−1) for each n ≥ 1, and Hλ =∏∞

n=0 Pλ(H
|I |−1
λ,n ). 

By Proposition 7, Hλ,n is compact and metrizable for every n ≥ 0. We endow Hλ with the 
product topology, and hence Hλ is also compact and metrizable. Since λ-continuity is preserved 
for induced preferences, the interdependent preference hierarchy of every λ-continuous type is 
also λ-continuous. That is, for every λ-continuous type space T = (Ti, πi)i∈I and every type 
ti ∈ Ti , we have π̂i(ti ) ∈ Hλ. (Recall that π̂i(ti) denotes the interdependent preference hierarchy 
of ti .)35

35 Following Mertens and Zamir (1985) and Brandenburger and Dekel (1993), but replacing Kolmogorov’s extension 
theorem by a version generalized to signed measures with uniformly bounded total variations, we can define the universal 
λ-continuous type space T ∗

λ = (T ∗
i,λ

, π∗
i,λ

)i∈I with the compact and metrizable set T ∗
i,λ

of all λ-continuous preference 
hierarchies satisfying coherence and common certainty of coherence and the homeomorphism π∗

i,λ
= π∗

i
|T ∗

i,λ
: T ∗

i,λ
→

Pλ(T ∗ ). We do not need these facts, though.
−i,λ
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Appendix C. Proofs in Section 5

The proofs in this section will use the self-contained treatment of general interdependent 
expected utility preferences in Appendix B.

C.1. Proof of Proposition 4

The following result generalizes Proposition 3.

Proposition 8. For every type space T = (Ti, πi)i∈I , every agent i ∈ I , and every type ti ∈ Ti , 
we have

Ei(ti;T ,M) ⊇ Ei(π̂i(ti ); T̂ ,M)

for every finite mechanism M = ((Mi)i∈I , O), where T̂ = (T̂i , π∗
i |T̂i

)i∈I is a preference closed 
subspace of the universal type space T ∗ = (T ∗

i , π∗
i )i∈I with T̂i = π̂i (Ti) for each i ∈ I .

Proof. The proof is analogous to that of Proposition 3; we only need to replace the belief-
preserving property by the preference-preserving property established in Proposition 6. �

Proposition 4 follows from Proposition 8 and the existence of equilibria for countable types 
(recall the proof of Theorem 2).

C.2. Proof of Proposition 5

Given a type space T = (Ti, πi)i∈I and a finite mechanism M = ((Mi)i∈I , O), we define the 
set of actions that are preference rationalizable for type ti , denoted by PRi (ti ) or PRi (ti; T , M)

as follows:

PR0
i (ti ) = Mi,

PRn+1
i (ti ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩mi ∈ Mi

∣∣∣∣∣∣∣∣∣∣

there exists �i ∈ P(M−i × T−i ) s.t.
(i) �i is certain of

∏
j 
=i graph(PRn

j ),

(ii) mrgT−i
�i = πi(ti),

(iii) �i weakly prefers O(mi, ·) to O(m′
i , ·)

for every m′
i ∈ Mi

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

PRi (ti ) =
∞⋂

n=0

PRn
i (ti).

Note that the inductive step is well defined since we can show inductively that graph(PRn
i ) is 

measurable in Mi × Ti for every i ∈ I and n ≥ 0.

Lemma 5. For every finite type space T = (Ti, πi)i∈I and every finite mechanism M =
((Mi)i∈I , O), we have the following:

1. We have mi /∈ PR1
i (ti ) if and only if there exists σi ∈ �(Mi) such that:

(a) O(σi, m−i ) − O(mi, m−i ) is independent of m−i ∈ M−i , and
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(b) πi(ti) strictly prefers O(σi, m−i ) to O(mi, m−i ) for some (and hence for all) 
m−i ∈ M−i .36

2. PRi (ti) = PR1
i (ti).

Proof. For part 1, the if direction is immediate. To show the only-if direction, let πi(ti) be 
represented by w̄i : T−i × Z →R as follows:

f � f ′ ⇔
∑
t−i ,z

(f (t−i )(z) − f ′(t−i )(z))w̄i(t−i , z) ≥ 0.

If mi /∈ PR1
i (ti ), then there is no wi : M−i × T−i × Z →R such that∑

m−i

wi(m−i , t−i , z) = w̄i(t−i , z) for all t−i , z,

∑
m−i ,t−i ,z

(O(mi,m−i )(z) − O(m′
i ,m−i )(z))wi(m−i , t−i , z) ≥ 0 for all m′

i .

By Farkas’ lemma, there exist D : T−i × Z → R and σi ∈ �(Mi) such that

D(t−i , z) − (O(σi,m−i )(z) − O(mi,m−i )(z)) = 0 for all t−i ,m−i , z,∑
t−i ,z

D(t−i , z)w̄i(t−i , z) > 0.

Thus, O(σi, m−i )(z) − O(mi, m−i )(z) is independent of m−i , and πi(ti) strictly prefers 
O(σi, m−i ) to O(mi, m−i ).

For part 2, fix any player i ∈ I . For each j 
= i and tj ∈ Tj , if mj ∈ PR1
j (tj ), then let σj (mj , tj )

be the point mass on mj . If mj /∈ PR1
j (tj ), then by part 1, there exists σj (mj , tj ) ∈ �(Mj) such 

that for every z ∈ Z, O(σj (· | mj , tj ), m−j )(z) −O(mj , m−j )(z) is independent of m−j . Without 
loss of generality, we assume that σj (mj , tj ) ∈ �(PR1

j (tj )). For each m−i ∈ M−i and t−i ∈ T−i , 

define σ−i (m−i , t−i ) ∈ �(
∏

j 
=i PR1
j (tj )) by σ−i (m−i , t−i )(m

′−i ) =
∏

j 
=i σj (mj , tj )(m′
j ) for 

each m′−i ∈ PR1−i (t−i ).
Pick any ti ∈ Ti and any mi ∈ PR1

i (ti ). Then there exists �i ∈ P(M−i × T−i ) such that 
mrgT−i

�i = πi(ti) and mi is a best response with respect to �i . We will show that mi survives 
in the second step of iteration.

Let πi(ti) be represented by w̄i : T−i × Z → R. Let �i be represented by wi : M−i × T−i ×
Z → R such that 

∑
m−i

wi(m−i , ·, ·) = w̄i . Define w′
i : M−i × T−i × Z → R by

w′
i (m

′−i , t−i , z) =
∑
m−i

σ−i (m−i , t−i )(m
′−i )wi(m−i , t−i , z)

for m′−i ∈ M−i , t−i ∈ T−i and z ∈ Z. Denote by �′
i ∈ P(M−i × T−i ) the preference represented 

by w′
i . First, since σ−i (m−i , t−i ) ∈ �(

∏
j 
=i PR1

j (tj )) for every m−i ∈ M−i and every t−i ∈ T−i , 

�′
i is certain of 

∏
j 
=i graph(PR1

j ). Second, we have

36 We define O(σi, m−i ) by O(σi , m−i )(z) =
∑

′ O(m′ , m−i )(z)σi (m
′ ) for each z ∈ Z.
m

i i i
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∑
m′−i

w′
i (m

′−i , t−i , z) =
∑

m−i ,m
′−i

σ−i (m−i , t−i )(m
′−i )wi(m−i , t−i , z)

=
∑
m−i

wi(m−i , t−i , z)

= w̄i(t−i , z),

and hence mrgT−i
�′

i = πi(ti). Third, for every m′
i ∈ Mi , we have∑

m′−i

O(m′
i ,m

′−i )(z)w
′
i (m

′−i , t−i , z)

=
∑

m−i ,m
′−i

O(m′
i ,m

′−i )(z)σ−i (m−i , t−i )(m
′−i )wi(m−i , t−i , z)

=
∑
m−i

O(m′
i , σ−i (m−i , t−i ))(z)wi(m−i , t−i , z)

=
∑
m−i

(O(m′
i ,m−i )(z) + D(m−i , t−i , z))wi(m−i , t−i , z)

=
∑
m−i

O(m′
i ,m−i )(z)wi(m−i , t−i , z) +

∑
m−i

D(m−i , t−i , z)wi(m−i , t−i , z)

for every t−i ∈ T−i and every z ∈ Z, where D(m−i , t−i , z) := O(m′
i , σ−i (m−i , t−i ))(z) −

O(m′
i , m−i )(z) is independent of m′

i by the construction of σ−i(m−i , t−i ). Since mi is a best 
response with respect to �i represented by wi , it is also a best response with respect to �′

i

represented by w′
i . �

Lemma 6. For every pair of finite type spaces T = (Ti, πi)i∈I and T ′ = (T ′
i , π

′
i )i∈I , every agent 

i ∈ I , and every pair of types ti ∈ Ti and t ′i ∈ T ′
i , if π̂i,1 (ti;T ) = π̂i,1

(
t ′i ;T ′), then we have

PRi (ti;T ,M) = PRi (t
′
i ;T ′,M)

for every finite mechanism M = ((Mi)i∈I , O).

Proof. The result follows from Lemma 5. �
Proposition 5 follows from rewriting the statement of Lemma 6 in terms of equilibrium.

C.3. The robust scoring rule

As in Section 4.2, we analyze a single-agent mechanism that reveals her state-dependent 
preferences. Fix λ ∈ (0, 1/2]. Fix a compact metric space X with metric d . By Proposition 7, 
Pλ(X) is also a compact metric space, whose metric is denoted by dP . The choice function with 
respect to � ∈ Pλ(X) is given by

C�(f,f ′) =
{

f if � weakly prefers f to f ′,
f ′ if � strictly prefers f ′ to f

for every f, f ′ ∈ F(X).
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By the Stone–Weierstrass theorem, there exists a countable dense subset F = {f1, f2, . . .} ⊂
Fc(X) in the sup norm.

We consider the following direct mechanism M0 = (M0, O0) for a single agent with message 
set M0 = Pλ(X) and outcome function O0 : M0 × X → �(Z) given by

O0(m,x)(z) =
∞∑

k=1

∞∑
l=1

2−k−lCm(fk, fl)(x)(z) (3)

for each realized state x ∈ X and reported preference m ∈ M0.
For each δ > 0, � ∈ Pλ(X), and measurable space 
, we define

Pλ,δ,�(X × 
) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩�′′ ∈ Pλ(X × 
)

∣∣∣∣∣∣∣∣∣∣
there exists �′ ∈ Pλ(X × X′ × 
)

with X′ = X s.t.
(i) �′ is certain of {(x, x′) | d(x, x′) ≤ δ} × 
,

(ii) mrgX�′ = �,

(iii) mrgX′×
�′ = �′′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Lemma 7. Fix λ ∈ (0, 1/2]. For every ε > 0, there exists δ > 0 such that the following is true 
for every preference � ∈ Pλ(X), every pair of messages m, m′, every measurable space 
, and 
every perturbed outcome function O : M0 × X × 
 → �(Z): if dP (�, m) ≤ δ, d�(�, m′) > ε, 
and ‖O(·, ·, ω) − O0‖ ≤ δ for every ω ∈ 
, then every preference in Pλ,δ,�(X × 
) strictly 
prefers O(m, ·, ·) to O(m′, ·, ·).

Proof. Suppose not. Then there exists ε > 0 such that for every n ∈N, there exist �n, mn, m′
n ∈

Pλ(X) with dP (�n, mn) ≤ 1/n and dP (�n, m
′
n) > ε, measurable space 
n, perturbed outcome 

function On : M0 × X × 
n → �(Z) with ‖On(·, ·, ω) − O0‖ ≤ 1/n for every ω ∈ 
n, �′
n ∈

Pλ(X×X′ ×
n) with X′ = X such that �′
n is certain of {(x, x′) | d(x, x′) ≤ δ} ×
n, mrgX�′

n =
�n, and mrgX′×
�′

n weakly prefers On(m
′
n, ·, ·) to On(mn, ·, ·). By taking a subsequence if 

necessary, we can assume without loss of generality that �′
n ∈ Pz,z,λ(X × X′ × 
n) with a fixed 

pair (z, z), and hence �n ∈ Pz,z,λ(X) with the same pair (z, z). By Proposition 7, by taking a 
subsequence if necessary, we can find �∗, m′,∗ ∈ Pλ(X) such that �n → �∗ and m′

n → m′,∗
as n → ∞. Note that mn → �∗ as n → ∞, and �∗ 
= m′,∗. Also note that �∗ ∈ Pz,z,λ(X). 
Let νn, ν∗ ∈ caz,z,λ(X × Z) and ν′

n ∈ caz,z,λ(X × X′ × 
n × Z) represent �n, �∗, and �′
n, 

respectively. Note that mrg1,4ν
′
n = νn.

Let

u∗ =
∫

O0(�∗, x)(z)dν∗(x, z).

Claim 3. We have

lim
n→∞

∫
O0(mn, x)(z)dνn(x, z) = u∗,

lim sup
n→∞

∫
O0(m′

n, x)(z)dνn(x, z) < u∗.



D. Bergemann et al. / Journal of Economic Theory 168 (2017) 329–371 369
Proof of Claim 3. The claim follows from showing that

lim
n→∞

∫
Cmn(fk, fl)(x)(z)dνn(x, z) =

∫
C�∗(fk, fl)(x)(z)dν∗(x, z),

lim sup
n→∞

∫
Cm′

n
(fk, fl)(x)(z)dνn(x, z) ≤

∫
C�∗(fk, fl)(x)(z)dν∗(x, z),

for each k, l, and that the second inequality holds with strict inequality for some k, l. The first 
equality and the second weak inequality follow from the standard revealed preference argument. 
To show the strict inequality, since �∗ 
= m′,∗ and F ⊂ Fc(X) is dense in the sup norm, there 
exist k, l such that �∗ strictly prefers fk to fl while m′,∗ strictly prefers fl to fk . Since m′

n

strictly prefers fl to fk for sufficiently large n, we have

lim
n→∞

∫
Cm′

n
(fk, fl)(x)(z)dνn(x, z)

= lim
n→∞

∫
fl(x)(z)dνn(x, z)

=
∫

fl(x)(z)dν∗(x, z)

<

∫
fk(x)(z)dν∗(x, z)

=
∫

C�∗(fk, fl)(x)(z)dν∗(x, z). �
Claim 4. We have

lim
n→∞

(∫
On(m,x′,ω)(z)dν′

n(x, x′,ω, z) −
∫

O0(m,x)(z)dνn(x, z)

)
= 0

and the convergence is uniform in m ∈ M0.

Proof of Claim 4. Note that∣∣∣∣∫ On(m,x′,ω)(z)dν′
n(x, x′,ω, z) −

∫
O0(m,x)(z)dνn(x, z)

∣∣∣∣
≤
∣∣∣∣∫ On(m,x′,ω)(z)dν′

n(x, x′,ω, z) −
∫

O0(m,x′)(z)dν′
n(x, x′,ω, z)

∣∣∣∣
+
∣∣∣∣∫ O0(m,x′)(z)dν′

n(x, x′,ω, z) −
∫

O0(m,x)(z)dνn(x, z)

∣∣∣∣ .
The first term is bounded above by supω∈
n

‖On(·, ·, ω) − O0‖‖ν′
n‖ ≤ (|Z| − 1)(1 − λ)/(nλ).

To show that the second term converges to 0 uniformly in m, it is enough to show that

lim
n→∞

(∫
f (x′)(z)dν′

n(x, x′,ω, z) −
∫

f (x)(z)dνn(x, z)

)
= 0

for each f ∈ Fc(X). Since X is a compact metric space, f is uniformly continuous. Therefore, for 
every η > 0, there exists N such that maxz

∣∣f (x)(z) − f (x′)(z)
∣∣< η whenever d(x, x′) ≤ 1/N . 

For every n ≥ N , we have
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∣∣∣∣∫ f (x′)(z)dν′
n(x, x′,ω, z) −

∫
f (x)(z)dνn(x, z)

∣∣∣∣
≤
∣∣∣∣∫ f (x′)(z)dν′

n(x, x′,ω, z) −
∫

f (x)(z)dν′
n(x, x′,ω, z)

∣∣∣∣
+
∣∣∣∣∫ f (x)(z)dν′

n(x, x′,ω, z) −
∫

f (x)(z)dνn(x, z)

∣∣∣∣ .
The first term is bounded above by η‖ν′

n‖ ≤ η(|Z| − 1)(1 − λ)/λ; the second term is equal to 
zero since mrgX×Zν′

n = νn. �
Claims 3 and 4 contradict the assumption that mrgX′×
�′

n weakly prefers On(m
′
n, ·, ·) to 

On(mn, ·, ·). �
C.4. Proof of Theorem 4

Fix λ ∈ (0, 1/2]. Given a λ-continuous type space T = (Ti, πi)i∈I and a finite mechanism 
M = ((Mi)i∈I , O), we define the set of actions that are λ-continuously rationalizable for type 
ti , denoted by Ri,λ(ti) or Ri,λ(ti; T , M), as follows:

R0
i,λ(ti) = Mi,

Rn+1
i,λ (ti) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩mi ∈ Mi

∣∣∣∣∣∣∣∣∣∣

there exists �i ∈ Pλ(M−i × T−i ) s.t.
(i) �i is certain of

∏
j 
=i graph(Rn

j,λ),

(ii) mrgT−i
�i = πi(ti),

(iii) �i weakly prefers O(mi, ·) to O(m′
i , ·)

for every m′
i ∈ Mi

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

Ri,λ(ti) =
∞⋂

n=0

Rn
i,λ(ti).

Note that the inductive step is well defined since we can show inductively that graph(Rn
i,λ) is 

measurable in Mi × Ti for every i ∈ I and n ≥ 0.
Let dλ be a metric compatible with the product topology on the set Hλ of λ-continuous pref-

erence hierarchies.

Proposition 9. Fix λ ∈ (0, 1/2]. For every ε > 0, there exists a finite mechanism M =
((Mi)i∈I , O) such that

dλ(π̂i(ti;T ), π̂i(t
′
i ;T ′)) > ε ⇒ Ri,λ(ti;T ,M) ∩ Ri,λ(t

′
i ;T ′,M) = ∅

for every pair of λ-continuous type spaces T = (Ti, πi)i∈I and T ′ = (T ′
i , π

′
i )i∈I , every agent 

i ∈ I , and every pair of types ti ∈ Ti and t ′i ∈ T ′
i .

Sketch of the Proof. The proof is analogous to that of Proposition 2. By Proposition 7, H |I |−1
λ,n−1

is compact and metrizable, and hence we can let X = H
|I |−1
λ,n−1 and apply Lemma 7 repeatedly. �

Proof of Theorem 4. 1 ⇒ 3 follows from Proposition 4. 3 ⇒ 2 follows from the fact that equi-
librium is a refinement of λ-continuous preference rationalizability. 2 ⇒ 1, or its contrapositive 
¬1 ⇒ ¬2, follows from Proposition 9. �
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