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Many important economic problems have
been studied with the tools of auction theory
and mechanism design more generally.
Much of the literature, however, studies a
static, one-time decision. In many problems
of interest, more than a single decision
needs to be made; rather, a sequence of
decisions needs to be made. These decisions
often depend crucially on the dynamic
aspects of the environment. For example, in
the classical airline revenue management
problem, an airline must decide how to price
seats on a flight in response to its changing
inventory as well as to the evolution of the
customer base. A search engine must choose
how to allocate its advertising inventory in
response to changing search queries and
advertiser budgets. Network capacity (either
bandwidth or computational resources)
needs to be dynamically reallocated in
response to the arrival of new computational
tasks of varying priority. Private and public
procurement agencies must decide how to
assign new contracts in response to the
changing experiences, competencies, and
availabilities of contractors.

The theory of auctions and mechanism
design has been extremely successful in tack-
ling a wide variety of problems. Unfortu-
nately, solutions to static problems often do
not translate directly to dynamic settings.
Consider, for instance, the standard second-
price auction for a single object with private
values. Buyers are asked to submit bids for
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the good, which is then allocated to the high-
est bidder. This winning bidder then pays the
second-highest of the submitted bids. As first
demonstrated by Vickrey [1], it is a (weakly)
dominant strategy for buyers to bid their
true values. Thus, the object is allocated effi-
ciently: the buyer who values the object the
most receives it.

In a dynamic setting, however, the second-
price auction need not retain its desirable
properties. The following example is illus-
trative. Suppose that there are two objects
to be allocated: use of a production facility
today and use of that same facility tomorrow.
Today, two perfectly patient buyers wish to
make use of the facility, the first valuing that
use at $100 and the second valuing it at $75.
A third buyer who will arrive tomorrow val-
ues use of the facility at $50. If a second-price
auction is used in each period and the buyers
bid truthfully, then the first buyer will win
in the first period at a price of $75, and the
second buyer will win in the second period at
a price of $50. On the other hand, suppose
that the first buyer instead bids $60 in the
first period and truthfully in the second. She
will then lose in the first period, but win in
the second and pay a price of $50, below what
she otherwise would have paid. Thus, bidding
one’s value need not be an optimal strategy
in a sequence of second-price auctions.

Notice that in the above example, despite
the lack of truthful behavior by the bid-
ders, the outcome is still efficient. As we will
discuss later, this need not always be the
case. In a more general setting when buy-
ers are uncertain about the arrival time and
willingness-to-pay of each of their competi-
tors, Said [2] demonstrates that the second-
price sealed-bid auction is often incapable
of yielding an efficient outcome, even when
bidders are forward-looking and fully ratio-
nal. Thus, in order to achieve desirable out-
comes in dynamic settings, we must move
beyond tools that are best suited to static
environments.

This is precisely the aim of the recent (and
growing) literature on dynamic mechanism
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design. We survey this literature, categoriz-
ing it by the nature of the dynamics involved.
In particular, we examine two strands of
literature: one in which the population of
agents changes over time, but their private
information is fixed; and the other in which
the population of agents is fixed, but their
private information changes over time. We
will further divide these two categories into
those papers whose aim is achieving efficient
outcomes and those whose aim is achieving
revenue-maximizing outcomes.

A DYNAMIC POPULATION WITH FIXED
INFORMATION

We begin by exploring the possibility of
implementing desirable outcomes when
faced with a dynamic population whose
private information is fixed. In the course of
our discussion, we will examine some of the
problems that arise in such settings and how
they differ from those found in static, one-
shot models. Note that all the models and
papers we discuss assume private values.

Maximizing Social Welfare

Efficiency in the Face of Arrival and Depar-
ture Dynamics. Parkes and Singh [3] develop
a framework for studying sequential allo-
cation problems in a dynamic population
setting. In their world, various subsets of
agents are present at various times. In par-
ticular, each agent has an arrival time and
a departure time, and has a utility func-
tion for decisions made while she is present.
What makes the problem especially diffi-
cult is that the decision maker (and mech-
anism designer) does not know any of this
information—the designer must incentivize
the agents to reveal that information.

Despite this difficulty, Parkes and Singh
are able to construct a mechanism (the
‘‘online VCG’’ mechanism) which generalizes
the Vickrey-Clarke-Groves mechanism from
static environments and implements the
efficient outcome. Their mechanism is a
direct revelation mechanism in which buyers
report their private information upon arrival
to the mechanism. Given these reports, the
mechanism carries out an efficient policy.

In order to enable the truthful revelation of
private information, the mechanism chooses
transfers that align agents’ incentives with
those of a benevolent social planner. Similar
to how the static VCG mechanism sets
transfers equal to the externality that an
agent imposes on other agents, the online
VCG mechanism sets transfers equal to the
expected externality that an agent imposes.
This expected externality takes into account
each agent’s impact on the other agents
currently present as well as on agents that
may arrive in the future.

We should note, however, that unlike the
static VCG mechanism, this truthful report-
ing is not a dominant strategy, as the calcu-
lation of expected externalities depends upon
the truthful reporting of all other agents. If,
instead, an agent believes that agents in the
future are not reporting truthfully, it may be
in her best interest to misreport her true type.

Efficient Sequential Assignment with Impa-
tient Buyers. In related work, Gershkov and
Moldovanu [4] examine the allocation of a
finite set of heterogeneous durable goods to
a dynamic population of randomly arriving
buyers. Crucially, the buyers in this set-
ting are impatient—they wish to purchase
an object immediately upon their arrival on
the market. Moreover, these buyers share a
common ranking of the various objects. In
this setting, objects are durable while buyers
are impatient. This implies that the relevant
trade-off is between allocating an object to
a buyer at the current time and the option
of assigning it to a buyer in the future who
might value it more. In a complete informa-
tion setting, the efficient dynamic allocation
policy was first characterized by Albright
[5]. This policy prescribes an ordered par-
tition of the set of possible valuations at each
possible time. Agents with values in the high-
est element of the partition receive the best
available object; agents in the second-highest
element receive the second-best remaining
object, and so on. These intervals may depend
upon the time of an agent’s arrival or on the
set of remaining objects.

Gershkov and Moldovanu [4] show that
this efficient policy is, in fact, implementable
in the presence of incomplete information
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about the valuations of arriving buyers. Since
buyers are impatient, there is no loss of
generality in considering direct revelation
mechanisms where each buyer reports her
type to the mechanism designer upon her
arrival to the market. Each buyer is charged
the expected externality that he/she imposes
on future agents, where expectations are
taken with respect to the arrival process
and the valuations of future agents. This
implies that each agent’s net utility is exactly
equal to his/her expected marginal contri-
bution to the social welfare, conditional on
the information available at the time of her
arrival—essentially, the efficient mechanism
is a dynamic Vickrey-Clarke-Groves mecha-
nism like the Parkes and Singh [3] online
VCG mechanism discussed above.

Efficient Auctions with Dynamic Popula-
tions. In a closely related recent work, Said
[2,6] examines the allocation of a sequence
of indivisible goods to a dynamic population
of buyers. In this setting, patient buyers
demand a single unit of perishable homoge-
neous goods (such as computational time on
a central computing facility, or capacity in a
production line). These buyers arrive at ran-
dom times to the market, and have private
valuations, which are drawn independently
and identically from a given distribution.

While a variant of the online VCG mecha-
nism of Parkes and Singh [3] may be used
in order to achieve an efficient allocation
of objects to buyers, these mechanisms are
direct revelation mechanisms, requiring buy-
ers to report their values to the mechanism
upon their arrival to the market. In practice,
however, direct revelation mechanisms may
be difficult to implement or undesirable due
to privacy or complexity concerns.

Therefore, indirect auction mechanisms
are often useful. In standard static settings,
the canonical auction for efficiently allocating
goods to buyers is the sealed-bid second-
price auction. This mechanism is the auction
analogue of the Vickrey-Clarke-Groves mech-
anism, allocating the object to the buyer
who submits the highest bid and charging
her a price equal to the second-highest bid.
Said [2] shows that, when selling a sequence
of objects, one in each period, to a stream

of buyers who arrive at random times, the
sealed-bid second-price auction is no longer
efficient.

In a sequential auction, buyers have an
‘‘option value’’ associated with losing in a
particular auction, as losing bidders have the
possibility of winning in a future auction.
The value of this option to a particular buyer
depends on his/her expectations of the prices
he/she may have to pay in the future. This is,
of course, dependent upon the private infor-
mation and values of other competitors. Thus,
despite the fact that buyers’ values for an
object do not depend upon the information of
their competitors, the dynamics of a sequen-
tial auction market generate interdependence
in (option) values.

This interdependence implies that a stan-
dard second-price sealed-bid auction does not
reveal sufficient information for the determi-
nation of buyers’ option values. In contrast,
the ascending (or English) auction is a simple
open auction format that does allow for the
gradual revelation of buyers’ private infor-
mation. As buyers drop out of each auction,
they indirectly reveal their private infor-
mation to their competitors, who are then
able to condition their current-period bids on
this information. Moreover, this process is
repeated in every auction in every period.
This allows newly arrived buyers to learn
about their competitors without being privy
to the detailed events of the previous periods,
thereby allowing for an efficient outcome.

Maximizing Revenue

Before discussing revenue-maximizing
dynamic mechanisms and auctions, it will
be helpful to briefly review the (standard)
results for static environments. In a static
setting, in which all buyers are present
simultaneously, Myerson [7] solves the
optimal mechanism design problem in the
following manner:

1. Incentive compatibility requires that
the allocation rule be monotone; that is,
buyers who report a higher type must
have a greater probability of receiving
an object.

2. Given a monotone allocation rule, the
corresponding payment rule is pinned
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down (up to a constant) via the revenue-
equivalence principle. When the goal is
maximizing revenues, the constant can
be determined via individual rational-
ity constraints.

3. Combining these two observations, the
revenue-maximization problem can be
transformed to the problem of maxi-
mizing ‘‘virtual’’ surplus—the surplus
from allocating objects less the informa-
tion rents that must be paid in order to
induce truthful revelation of types.

Thus, instead of maximizing the sum
of agents’ values as in the case of efficient
mechanism design, Myerson’s insight is
that revenue-maximization is equivalent
to maximizing the sum of agents’ virtual
values, where the virtual value of a buyer
is given by the difference between his/her
true value and the information rents neces-
sary for inducing truthtelling. An optimal
allocation rule, therefore, allocates objects
to the buyers with the highest nonnegative
virtual values—precisely those with the
most favorable trade-off between surplus
and information rents.

When buyers are ex ante symmetric and
the distribution of values is such that virtual
values are nondecreasing then this optimal
allocation rule is monotone in values. Thus,
incentive compatibility is achieved ‘‘for free’’
and the optimal auction corresponds to a
second-price auction with an appropriately
chosen reserve price. If, on the other hand,
virtual values are not increasing, then the
monotonicity constraint may be satisfied via
a procedure termed ‘‘ironing’’ which pools
some types of agents and randomizes among
them. Thus, in the static setting, increas-
ing virtual values is sufficient for revenue-
maximization to correspond to maximizing
virtual surplus.

Revenue-Maximization in the Face of Arrival
and Departure Dynamics. Returning to the
setting of arrival and departure dynamics,
Pai and Vohra [8] present what may be
thought of as the revenue-maximizing
counterpart to the efficient online VCG
mechanism of Parkes and Singh [3]. Here,
a seller with a fixed, finite supply of a

homogenous good faces a population of
potential buyers with unit demand who
arrive and depart over the course of a finite
time horizon. As in Parkes and Singh, the
times at which each agent arrives and
departs from the market are her private
information, as is her valuation for an object.
Agents’ types are assumed to be independent
draws from a common distribution. The seller
wishes to design an incentive-compatible
direct mechanism in order to maximize his
revenues.

The challenge then is to extend Myer-
son’s notion of a virtual value in order to
account for the additional privately known
arrival and departure times. Moreover, even
if such a virtual value is defined, the multidi-
mensional nature of the private information
implies that we must also find an appropriate
notion of monotonicity in order to guarantee
incentive compatibility.

Some care must be used when considering
direct revelation mechanisms in this setting
with random arrival and departure times.
In particular, note that buyers cannot make
reports before their arrival or claim to
depart after their true departure time (see
Green and Laffont [9] for more on restricted
mechanisms and the revelation principle).
Taking this into account, Pai and Vohra use
an appropriate formulation of the revelation
principle of Myerson [10] to restrict attention
to mechanisms that allocate to buyers, if
at all, only in the period of their departure.
They use the incentive compatibility con-
straints to show that the optimal allocation
rule must be monotone in valuations, hold-
ing entry and exit times fixed. Moreover,
incentive compatibility also requires that
the allocation rule be monotone in entry
and exit times. In particular, a buyer who
arrives earlier or departs later should have
a greater probability of receiving an object.
(Thus, buyers are incentivized to report the
greatest possible window of opportunity.)

Making use of the conditions imposed
by incentive compatibility, Pai and Vohra
[8] are able to arrive at a notion of virtual
valuation similar to that of Myerson [7],
except that information rents vary across
reported arrival and departure times. Thus,
in each period, the seller compares the
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virtual surplus from allocating an object to
a departing agent to the expected virtual
surplus of waiting an additional period. A
departing agent will receive an object only
if the former is greater than the latter.
However, unlike the setting of Myerson,
increasing virtual values are no longer suffi-
cient for such an allocation rule to be optimal,
but instead additional ‘‘ironing’’ may be nec-
essary: the optimal mechanism may need
to occasionally withhold an object despite a
lower future expected virtual surplus.

Optimal Sequential Assignment with Impa-
tient Buyers. Recall the relationship between
Parkes and Singh [3] and Gershkov and
Moldovanu [4] discussed earlier. An analo-
gous relationship exists between the work
of Pai and Vohra [8] and Gershkov and
Moldovanu [11]. This latter work considers
the problem of revenue-maximization in
a setting with a dynamic population of
impatient buyers. As in the paper discussed
earlier, a seller has a finite set of heteroge-
neous durable goods that he wishes to sell
to randomly arriving buyers who wish to
purchase an object immediately upon their
arrival to the market. (In a setting with
homogeneous durable goods and patient
buyers arriving stochastically, Gallien [12]
shows that when the distribution of buyer
inter-arrival times has an increasing failure
rate, the optimal mechanism allocates goods
to buyers only upon their arrival. There,
as Board [13] also shows in a related
discrete-time setting, the seller may behave
as though buyers are impatient.)

As in Pai and Vohra [8], there is a
dynamic trade-off that is introduced by the
arrival process of buyers. In particular,
when considering allocating an object to a
particular agent, the seller must consider
the opportunity cost of allocating that object
to future agents. However, the problem
here is (in some ways) simpler as buyers no
longer have multidimensional types. Since
buyers are impatient, there is no need to
consider incentives for revealing arrival or
departure times—the only dimension of
private information is the private value that
buyers have for each object.

Thus, the authors are able to prove that (as
in the case of the efficient policy) any incen-
tive compatible policy must take the form of
an ordered partition of possible valuations
at each point in time. This follows directly
from the fact that short-lived agents’ decision
problems are static, and so static insights
about incentives apply directly. Thus, agents
with values in the highest element of the
partition receive the best available object;
agents in the second-highest element receive
the second-best remaining object, and so on.

The next step in the characterization of
the revenue-maximizing dynamic mecha-
nism is to determine the revenue generated
by any particular incentive compatible
policy. The problem faced by the seller
upon the arrival of any particular agent can
then be translated into a static problem.
More specifically, the seller must decide
between allocating an object to the newly
arrived agent and obtaining the revenue
generated by ignoring that agent’s arrival
and proceeding with the (given) policy. This
is the same as the problem faced by a stan-
dard (static) revenue-maximizing monopolist
selling a single object, when the cost of
that object is given by the salvage value
of the inventory (which corresponds to the
expected future revenues from the dynamic
policy). It is possible, by working backwards
from the case of a single-object inventory,
to determine the optimal partition of the
valuation space for each possible inventory
and point in time. The revenue-maximizing
prices that correspond to these cutoffs are
then derived via revenue-equivalence.

Optimal Auctions with Dynamic Popu-
lations. In a complementary setting, Said
[2] explores the properties of revenue-
maximizing dynamic auctions. Instead of
durable goods and impatient buyers, he
examines the assignment of a sequence of
perishable goods to a population of patient
buyers. The buyers arrive to the market at
random times and remain until they receive
an object. Since their values for the objects
are private information, incentives must be
provided for information revelation in order
to achieve an optimal allocation.

In this setting, the seller and buyers
discount the future with a common discount
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factor δ ∈ (0, 1). This implies that even
though objects are assumed to be individual
units of a homogeneous good, from the
perspective of any individual buyer, they
are differentiated products. To make this
clear, consider a buyer i with value vi who
is present on the market at some time t.
If this buyer receives an object in period
t, she receives a payoff of vi. However, if
she anticipates receiving an object in period
t + 1, then her expected payoff is δvi. Thus,
she does not value the two objects identically.

This alters the appropriate condition for
incentive compatibility. Recall that in static
settings with single-unit demand, incentive
compatibility requires that increasing a
buyer’s type should increase her probability
of receiving an object. In this dynamic setting
with single-unit demand, incentive compat-
ibility instead requires that increasing a
buyer’s type should increase her probability
of receiving an object sooner. This charac-
terization of incentive compatibility allows
for the derivation of a revenue-equivalence
theorem for this setting, which implies that
revenue-maximization can be achieved (in
the Myersonian tradition) by maximizing the
virtual social surplus.

Said [2] shows that applying a variant of
the online VCG mechanism discussed ear-
lier to virtual values maximizes revenues.
Instead of providing each buyer with a net
utility equal to her expected marginal con-
tribution to the social surplus, Said’s mech-
anism leaves each buyer with a net utility
equal to her expected marginal contribution
to the virtual surplus. Moreover, if an indirect
mechanism is desired, the earlier discussion
on efficient but indirect mechanisms remains
relevant—instead of a sequence of second-
price sealed-bid auctions with an optimally
chosen reserve price, a seller should use a
sequence of ascending auctions with that
same reserve price.

If objects are durable instead of per-
ishable, the recent work of Board and
Skrzypacz [14] provides a characterization
of the optimal dynamic auction. As before,
the revenue-maximizing direct mechanism
applies an efficient mechanism to virtual
values. This implies that there is a constant
cutoff value below which objects are not

allocated, and the object is allocated to the
buyer with the highest valuation exceeding
that cutoff. This cutoff is determined by a
simple one-period-look-ahead policy which
requires the seller to be indifferent between
selling to the cutoff type in the current period
and waiting an additional period for new
buyers to arrive.

With a single durable object to be allo-
cated, these cutoffs are constant in all but the
final period, and then drop in that period to
the static monopoly price. This implies that
buyers either buy immediately upon their
arrival or wait for the ‘‘fire sale’’ in the final
period. If the seller wishes to use an indi-
rect mechanism in order to implement this
optimal policy, Board and Skrzypacz show
that a sequence of second-price auctions with
deterministically declining reserve prices is
optimal. These reserve prices are chosen such
that the cutoff type is exactly indifferent
between purchasing in the current period
and waiting an additional period. The reserve
price must be declining so as to compensate
this cutoff-type buyer for the losses due to
discounting as well as for the possibility of
new competition arriving in future periods.
It follows that the reserve price must fall at
a rate faster than the discount rate.

A FIXED POPULATION WITH DYNAMIC
INFORMATION

The preceding section examined dynamic
auctions and mechanisms for settings in
which there is a dynamic population with
static, fixed types. A large and impor-
tant class of problems, however, does not
fit within this framework. Consider, for
instance, the case of sponsored search, where
search engines sell advertising slots along-
side ‘‘organic’’ search results. In this setting,
advertisers who are interested in a particular
keyword may revise their estimates of the
value of an advertisement based on their
experiences over time. The natural question
that arises in such a setting is how to design
mechanisms and auctions in order to properly
account for the changing private information.

We first consider the case of implementing
socially efficient outcomes in environments
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with dynamic information. The mechanisms
we examine generalize insights from static
settings to enable the truthful revelation of
changing private information in a dynamic
environment. We then turn to the objective of
maximizing revenues and discuss the recent
work in that area. As in the previous section,
we focus on private value environments.

Maximizing Social Welfare

Dynamic Pivot. Bergemann and Välimäki
[15] consider the problem of providing
incentives for truthtelling and satisfying
participation constraints in an efficient
mechanism. They consider a general infinite-
horizon dynamic model in which participants
observe a sequence of private signals over
time, and a sequence of decisions must be
taken in response to these signals. The
distribution of signals may depend on previ-
ously observed signals or decisions; however,
these signals are independent across agents
(conditional on observables).

Bergemann and Välimäki propose the
Dynamic Pivot Mechanism. This mechanism
is the natural generalization of the static
Vickrey-Clarke-Groves mechanism to a
dynamic environment. Recall that VCG-like
mechanisms incentivize truthtelling by
making efficient decisions and choosing
transfers such that each agent’s payoff is
equal to the total social surplus. By varying
the transfers to each agent in a way that
does not depend on her own report, we
obtain an entire set of efficient mechanisms.
The ‘‘Pivot’’ mechanism (which is often
considered the canonical VCG mechanism)
is the member of this class that subtracts
from each agent’s transfer the surplus that
the other agents could have achieved in her
absence; that is, it chooses transfers equal
to the externalities imposed on the rest of
the system so that each agent’s net utility
is equal to her marginal contribution to the
social welfare.

The key insight of Bergemann and
Välimäki [15] is that in a setting with
dynamic private information, incentives
for truthtelling and efficiency may be
guaranteed by choosing payments in each
period to be equal to the flow externalities.
More precisely, the externality that an

agent’s report in any given period imposes
on all other participating agents may be
decomposed into a current period effect and
a future (expected) effect. By committing
to a sequence of transfers equal to the
sequence of current-period externalities, the
mechanism designer or social planner is able
to give each buyer a flow payoff equal to
her flow marginal contribution to the social
welfare. Therefore, each agent’s expected
discounted payoff, looking forward from
any period, is equal to her total marginal
contribution to the social welfare (again,
starting at that point). This property (which
figured prominently in Bergemann and
Välimäki [16,17] in the construction of
dynamic first-price auctions in a complete
information setting) implies that, in each
period, all participating agents internalize
the impact of their current reports on others,
thereby aligning their incentives with those
of the efficiency-minded planner.

Cavallo, Parkes, and Singh [18] develop
a mechanism similar to the Dynamic Pivot
Mechanism in a setting with agents, whose
type evolution follows a Markov process. In
Cavallo, Parkes, and Singh [19], they extend
dynamic VCG to settings in which buyers are
‘‘periodically inaccessible’’ and are unable to
make reports (as in the case, for instance,
of a network setting where connectivity is
sometimes lost). Moreover, Cavallo [20] has
shown that the dynamic pivot mechanism
is also similar to its static VCG counter-
part, in that it achieves greater revenue
than any other possible efficient (dynamic)
mechanism. Therefore, in settings where the
mechanism designer is concerned with both
revenue and efficiency, the use of the dynamic
pivot mechanism may provide a partial reso-
lution to the conflict among the two.

Efficiency and Budget-Balance. Athey and
Segal [21] consider a similar setting to that
of Bergemann and Välimäki [15]; however,
they are also interested in finding an efficient
mechanism that is budget-balanced—that
is, a mechanism that requires no external
subsidies. In order to do so, Athey and Segal
propose the efficient ‘‘Team Mechanism.’’
This mechanism induces truthfulness by
providing a transfer to each agent, in each



8 DYNAMIC AUCTIONS

period that is equal to the sum of utilities
of all the other agents in that period. Thus,
in the same manner as the Dynamic Pivot
Mechanism (as well as the static VCG
mechanism), such a transfer scheme ensures
that each agent is a residual claimant for the
total social surplus.

As the Team Mechanism is not budget-
balanced, Athey and Segal modify it in a
generalization of the classic AGV mechanism
of d’Aspremont and Gerard-Varet [22]. The
AGV mechanism, in a static environment,
permits truthtelling by charging agents
transfers equal to the ‘‘expected externality,’’
their reports impose on others. However, the
value of these transfers are dependent upon
agents’ beliefs, and in a dynamic setting,
these beliefs may be evolving over time
and may, in fact, be manipulated by other
agents. In order to avoid such manipulations,
Athey and Segal construct the ‘‘Balanced
Mechanism,’’ which takes advantage of the
dynamic setting using the changes in the
expected present value of other agents’
utilities. By doing so, agents continue to
internalize the expected externality that
they impose upon others. Moreover, these
new transfers are not manipulable by other
agents, thereby allowing for budget-balance
while also implementing efficient outcomes.

One should note that, as with the static
AGV mechanism, it may be impossible to
both balance the budget and also satisfy
participation constraints. Although the
Balanced Mechanism satisfies ex ante par-
ticipation constraints (so that all agents
wish to participate in the mechanism at
the time of contracting), it differs from the
Dynamic Pivot Mechanism of Bergemann
and Välimäki [15], in that some agents
may wish to exit the mechanism after
some histories. Athey and Segal [21] show,
however, that if the time horizon is infinite
and agents are sufficiently patient, then
it is possible to satisfy these ‘‘periodic’’
participation constraints.

Maximizing Revenue

Contracting with Dynamic Information. In
many environments, buyers learn about their
demand over time. In an important contri-
bution, Courty and Li [23] consider optimal

dynamic contracts for such a setting. In their
model, buyers have private information about
the future distribution of their valuations for
the seller’s object. Subsequently, these buy-
ers then privately learn the realization of
their value. The monopolist could choose to
wait until buyers learn their realized val-
ues and then charge the standard monopoly
price. Surprisingly, by requiring the buyers to
reveal their private information sequentially,
the seller is able to extract additional sur-
plus. Instead of ‘‘screening’’ buyers once after
all private information is acquired, revenue-
maximization requires screening them twice
with a set of contingent contracts.

As in a standard static mechanism design
problem, revenue-maximization corresponds
to allocating to the buyers with the high-
est virtual values, thereby maximizing vir-
tual surplus. Since buyers’ initial types influ-
ence their ultimate value for the good, the
concept of a virtual value in this context
must take into account this influence. Specif-
ically, the information rents ‘‘paid’’ to buy-
ers in the first period (at the time of con-
tracting) must account for the informative-
ness of initial types about future types: the
more informative the initial type about the
future realization, the greater the informa-
tion rents that must be paid. Since incen-
tive compatibility requires monotonicity in
the allocation rule, this implies that distor-
tions away from efficiency are correspond-
ingly increased.

Eső and Szentes [24] consider a closely
related setting in which buyers have an
initial estimate of their valuation, and the
seller is able to control buyers’ acquisition of
additional refined information. Specifically,
the seller is able to choose whether to allow
buyers to receive additional signals that are
correlated with their private information.
They show that in the optimal revenue-
maximizing mechanism, the seller releases
all the additional private information that
he is able to. Moreover, his revenue in this
case is as large as the revenue he would
be able to achieve if he could observe this
information—quite surprisingly, buyers
gain no advantage from this additional infor-
mation and receive no additional information
rents when the seller is able to control
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the flow of information. Roughly speaking,
by using a more sophisticated dynamic
mechanism, the seller pays information
rents to buyers in the initial period, in
order to incentivize the revelation of their
initial private information, but subsequently
extracts all remaining potential surplus.

In a particular application, Eső and
Szentes [24] show how such a mechanism
would operate. Suppose buyers’ initial
private information is a noisy signal of their
value, and that they can then receive addi-
tional information that informs them of their
actual value. The optimal mechanism in this
case is a ‘‘handicap auction’’ in which buyers
can purchase an advantage in a second-stage
efficient auction. More concretely, each buyer
purchases a price premium from the seller
(where a smaller premium costs more),
and then in the second period (after the
revelation of additional information) the
buyers engage in a modified second-price
sealed-bid auction in which the winner is
required to pay her purchased premium
in addition to the second-highest bid. The
seller is able to extract additional revenue
by inducing buyers with higher expected
values to purchase smaller handicaps for the
second-stage auction.

Dynamic Incentives and Revenue Equiv-
alence. The recent contribution of Pavan,
Segal, and Toikka [25] generalizes the results
of Myerson [7] and Baron and Besanko [26]
to a general dynamic setting. In particular,
they characterize incentive compatibility
and revenue in multiperiod settings with
dynamic private information. The primary
challenge in such settings is an element of
multidimensionality. Instead of the single
dimension of potential misreports possible
in a traditional static mechanism design
problem, agents may be able to misrepresent
multiple ‘‘pieces’’ of information, possibly
choosing misreports contingent on her
previous private information.

The key step in their analysis is the
development of a ‘‘dynamic payoff formula’’
which expresses the derivative of an agent’s
expected payoff (and hence the seller’s rev-
enue) in an incentive compatible mechanism
with respect to her private information.

This formula summarizes the local incentive
compatibility constraints that a mechanism
designer must respect. Pavan, Segal, and
Toikka demonstrate the manner in which
this dynamic payoff formula relies on incen-
tive compatibility not only in a given period,
but also in all future periods; therefore, they
are able to capture not just the impact of
a change in an agent’s private information
on her current-period payoffs, but also the
influence on future private information.

This machinery yields a dynamic revenue-
equivalence theorem: the expected revenue
in any dynamic mechanism is determined
entirely (up to a constant) by the allocation
rule. Moreover, the expected revenue in an
incentive compatible mechanism is given
exactly by the expected virtual surplus
generated by that mechanism, where agents’
virtual values (as in Baron and Besanko [26];
Country and Li [23]; and Eső and Szentes
[24]) depend upon the informativeness of
current-period private information on future
private information. Thus, Pavan, Segal,
and Toikka [25] provide necessary conditions
(and some sufficient conditions) for incentive
compatibility and a general methodology for
revenue-maximization in dynamic settings.

One limitation of the generality of that
work, however, is the difficulty in estab-
lishing general sufficient conditions for the
incentive compatibility of a mechanism that
are easily verified. In a complementary
paper, Pavan, Segal, and Toikka [27] use
an approach pioneered by Eső and Szentes
[24] to represent an agent’s future-period
types as a function of their first-period type
and a random ‘‘shock’’ that is independent of
the first-period type. This approach allows
the identification (under slightly different
assumptions) of conditions for incentive
compatibility in infinite-horizon settings.

Despite this, however, sufficient condi-
tions for incentive compatibility often need
to be determined on a case-by-case basis for
various models. One such determination may
be found in Kakade, Lobel, and Nazerzadeh
[28], which sets out a model of sponsored
search auctions in which advertisers learn
about the efficacy of their advertisements
over time. Their model combines elements
of both private information and statistical
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learning. In particular, private informa-
tion evolves according to a multiarmed
bandit process (Deb [29] also considers a
similar setting). The authors also impose
‘‘separability’’ conditions on the stochastic
process governing the evolution of private
information (specifically, that it is a Markov
process) along with additive or multiplicative
separability of buyers’ utility functions in
their initial private information and future
private information. These conditions are, in
fact, sufficient conditions under which the
maximization of virtual surplus by using an
efficient algorithm (the Gittins index policy)
applied to virtual values maximizes revenue.

In a related setting, Battaglini [30]
examines an infinite-horizon model and
characterizes the revenue-maximizing long-
term contract of a monopolist facing a buyer
whose value follows a two-type Markov
process. This optimal contract is nonsta-
tionary; however, this contract (eventually)
converges over time to the efficient supply. A
crucial insight (that follows from the work
of Pavan, Segal, and Toikka) is that, in an
irreducible two-type Markov process, the
impact of changing the current-period type
vanishes in the long run—the current-period
type is almost completely uninformative
about types in the distant future. Therefore,
distortions away from the efficient contract
diminish in the long run, regardless of the
degree to which types are persistent.

FURTHER READING

A large body of work has developed in this
area. For further reading and examples of
dynamic auctions and mechanisms for set-
tings with changing populations and pri-
vate information, the curious reader may
wish to consult, among others, Akan, Ata,
and Dana [31]; Aviv and Pazgal [32]; Cav-
allo [33]; Doepke and Townsend [34]; Ger-
shkov and Moldovanu [35]; Kittsteiner and
Moldovanu [36]; Parkes [37]; Satterthwaite
and Shneyerov [38]; Shen and Su [39]; Talluri
and van Ryzin [40] [Chapter 6]; and Vulcano,
van Ryzin, and Maglaras [41].
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pivot mechanism. Econometrica 2010;78(2):
771–789.
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