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Before the work of Harsanyi (1967–1968) 
economists used to routinely argue that game 
theory could not be applied to economic set-
tings because it required common knowl-
edge of the environment. Following Harsanyi 
(1967–1968), economists accepted that rich 
enough “type spaces” allowed any possible 
lack of common knowledge to be incorporated. 
But very rich type spaces would be needed, 
and applied work remains highly sensitive 
to sometimes unexamined modeling choices 
about types. Nowhere is this more true than in 
mechanism design.

Two of us have written a series of papers 
highlighting the importance of lack of common 
knowledge and rich type spaces in mechanism 
design, now to be collected together in a book 
(Bergemann and Morris 2012). A new introduc-
tion examines key insights of this work using 
the classic example of the efficient allocation 
of a single good with interdependent values in 
a quasi linear environment to illustrate themes 
of the book (Bergemann and Morris 2011). In 
this article, we want to examine some issues 
about the single good problem in more detail. 
We discuss an approach to modeling interde-
pendent preferences distinguishing between 
“payoff types” and “beliefs types.” We report a 
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characterization (not in the book) of when the 
efficient allocation can be partially Bayesian 
implemented on a finite type space in this set-
ting. This characterization can be used to unify 
a number of sufficient conditions for efficient 
partial implementation in this classical setting. 
We also report how a canonical language for 
discussing interdependent types—developed in 
a more general setting by Bergemann, Morris, 
and Takahashi (2011)—applies in this set-
ting. We note by example that this canonical 
language will not allow us to distinguish some 
types in the payoff type–belief type language. 
Abreu and Matsushima (1992) showed that 
types that cannot be distinguished in this lan-
guage may always pool in some equilibrium, 
and, thus, the efficient allocation can only be 
fully implemented if it is measurable with 
respect to statements that can be expressed in 
this language.

There are I agents. Each agent i has a “payoff 
type” ​θ​i​ belonging to a finite set ​Θ​i​. Each agent i’s 
monetary valuation of a good depends on the pro-
file of payoff types θ = (​θ​1​, … , ​θ​I​) and is given 
by a valuation function ​v​i​ : ​Θ​1​ × ⋯ × ​Θ​I​ → ​ℝ​+​. 
Agents are assumed to know their own payoff 
type ​θ​i​ , but we want to allow for rich beliefs 
and higher order beliefs. Thus we assume each 
agent has a “type” ​t​i​ belonging to a finite set ​
T​i​ and write ​​  θ​​i​ : ​T​i​ → ​Θ​i​ for a function describ-
ing an agent’s payoff type and ​​  π​​i​ : ​T​i​ → Δ(​T​−i​) 
for his belief type. This decomposition of an 
agent’s type into a payoff type and a belief type 
is a natural one in this quasi-linear setting. Two 
of us used this implicit description of interde-
pendent types in our work on robust mecha-
nism design (Bergemann and Morris 2012). 
We will discuss briefly below a sense in which 
this decomposition can be seen as without loss 
of generality.

We will focus on the problem of allocat-
ing the object to the agent with the highest 
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valuation. Write ​i​*​(θ) for the agent who val-
ues the object the most, i.e., ​i​*​(θ) ∈ arg maxi ​
v​i​ (θ), and in this finite type setting, we can 
assume without loss of generality that ​i​*​(θ) is 
uniquely defined. We are interested in designing 
a finite mechanism involving monetary trans-
fers which has an equilibrium where the object 
is always allocated to the agent who values it 
the most. By the revelation principle, we can 
restrict attention to direct mechanisms. In this 
context, a direct mechanism consists of a rule 
specifying monetary transfers to all agents, 
y : T → ​ℝ​I​. Now if agents report themselves to be 
of the type profile t = (​t​1​, … , ​t​I​), the object will 
be allocated to agent ​i​*​(​  θ​(t)), where we write ​  θ​(t) 
= (​​  θ​​1​(​t​1​), … , ​​  θ​​ I​(​t​I​)), and each agent i will 
receive a monetary transfer ​y​i​(t). This direct 
mechanism will be incentive compatible if

(1)

  ​t​i​ ∈  ​arg max    
​t​ i​ ′ ​∈​T​i​

  ​ {   ​∑ 
​t​−i​∈​T​−i​

​ 
 

  ​ (​​핀​i​(​  θ​(​t​ i​ ′​, ​t​−i​)) ​v​i​(​  θ​(​t​i​, ​t​−i​))

	 + ​ y​i​(​t​ i​ ′​, ​t​−i​))​​  π​​i​(​t​−i​ | ​t​i​)},

where the indicator function ​핀​i​(⋅) of agent i is 
one if i = ​i​*​(​  θ​(t)) and zero otherwise. Thus we 
say efficient partial implementation is possible if 
and only if there exists y : T → ​ℝ​I​ such that (1) 
is satisfied.

To give a characterization of the incentive 
compatibility of the efficient social choice func-
tion ​i​*​, or short, the efficient partial implementa-
tion, it is useful to first identify key properties of 
players’ incentives to report their payoff types 
for beliefs about others’ payoff types. Fix an 
agent i and fix his beliefs about the payoff types 
of others, ​ψ​i​ ∈ Δ(​Θ​−i​). Suppose that agent i 
expects the object to be allocated according to ​
i​*​ based on the truthful reports of other agents 
and his own (true or false) report. By extension 
of the valuation function ​v​i​, we write ​V​i​(​θ​i​, ​θ​ i​ ′​, ​ψ​i​) 
for the expected utility gain of agent i from a 
misreport ​θ​ i​ ′​ relative to his true payoff type ​θ​i​, 
so that

​V​i​(​θ​i​, ​θ​ i​ ′​, ​ψ​i​) ≜

 ​∑ ​θ​−i​​ 
 
  ​ (​​핀​i​(​θ​ i​ ′​, ​θ​−i​)  − ​ 핀​i​(​θ​i​, ​θ​−i​)) ​ψ​i​(​θ​−i​) ​v​i​(​θ​i​, ​θ​−i​). 

Fix a subset ​​
_

 Θ​​i​ ⊆ ​Θ​i​; say that ​V​i​ is cyclically 
monotonic on (​​

_
 Θ​​i​, ​ψ​i​) if, for every sequence of 

types (​θ​ i​ 1​, … , ​θ​ i​ K​) in ​​
_

 Θ​​i​,

 ​ V​i​(​θ​ i​ 1​, ​θ​ i​ 2​, ​ψ​i​)  + ​ V​i​(​θ​ i​ 2​, ​θ​ i​ 3​, ​ψ​i​)  +  ⋯ 

	 + ​ V​i​(​θ​ i​ K​, ​θ​ i​ 1​, ​ψ​i​)  ≤  0.

Now, Theorem 1 in Rochet (1987) shows that 
there exists ​​

_
 y​​i​ : ​​
_

 Θ​​i​ → ℝ such that ​V​i​(​θ​i​, ​θ​i​, ​ψ​i​) + 
​​_ y​​i​(​θ​i​) ≥ ​V​i​(​θ​i​, ​θ​ i​ ′​, ​ψ​i​) + ​​_ y​​i​(​θ​ i​ ′​ ) for all ​θ​i​, ​θ​ i​ ′​ ∈ ​Θ​i​ if 
and only if ​V​i​ is cyclically monotonic on (​​

_
 Θ​​i​, ​ψ​i​). 

Thus cyclic monotonicity tells us that—ignor-
ing belief types beyond the induced beliefs ​ψ​i​ 
over the payoff types—it is possible to choose 
transfers that give an agent an incentive to report 
his payoff type truthfully. To state this precisely, 
it will be useful to introduce the mapping 
​​  ψ​​i​ : Δ(​T​−i​) → Δ(​Θ​−i​) which describes the 
beliefs over payoff types induced by the agents’ 
belief types, so that

	​​   ψ​​i​(​π​i​) [​θ​−i​] ≜ ​π​i​({​t​−i​ : ​​  θ​​−i​(​t​−i​) = ​θ​−i​})

for any ​π​i​ ∈ Δ(​T​−i​). Now the incentive compat-
ibility condition (1) can be rewritten as:

(2)  ​t​i​  ∈ ​ arg max    
​t​ i​ ′ ​∈​T​i​

  ​ {​V​i​(​​  θ​​i​(​t​i​), ​​  θ​​i​(​t​ i​ ′​ ), ​​  ψ​​i​(​​  π​​ i​(​t​i​)))

	 +  ​  ∑ 
​t​−i​∈​T​−i​

​ 
 

  ​ ​y​i​​(​t​ i​ ′​, ​t​−i​) ​​  π​​i​(​t​−i​ | ​t​i​)}.

Now we consider what we can learn about 
agents’ beliefs, and how we can use what we 
learn. The classical environment we are consid-
ering—with quasi-linear utility and no limited 
liability constraints—is well known to be very 
permissive in allowing “belief extraction.” As 
observed by d’Aspremont and Gerard-Varet 
(1979), Myerson (1981), and Cremer and 
McLean (1985), it is possible to elicit agents’ 
beliefs over other types by offering them gam-
bles. Our general characterization of efficient 
partial implementation will essentially state that 
agents’ beliefs can be elicited for “free,” and 
what then matters is whether the set of payoff 
types consistent with a given belief type can 
be distinguished. But this reduces to a cyclic 
monotonicity condition. Thus, write ​​ ˆ 

 
 Θ​​i​ (​π​i​) for 

the set of payoff types of player i associated with 
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belief type ​π​i​, so that ​​ ˆ 
 

 Θ​​i​ (​π​i​) = {​θ​i​ ∈ ​Θ​i​ | ∃​t​i​ with 
​​  π​​i​(​t​i​) = ​π​i​ and ​​  θ​​i​(​t​i​) = ​θ​i​}. Now we have:

Proposition 1: Efficient partial implementa-
tion is possible if and only if each ​V​i​ satisfies 
cyclic monotonicity on (​​ ̂  

 
 Θ​​i​(​π​i​), ​​  ψ​​i​(​π​i​)) for each ​

π​i​ in the range of ​​  π​​i​.

Proof:
Suppose efficient partial implementa-

tion is possible and so (2) holds for some 
y : T → ​ℝ​I​. For any agent i, ​π​i​ in the range 
of ​​  π​​i​ and ​θ​i​ ∈ ​​ ˆ 

 
 Θ​​i​(​π​i​), write ​​  t ​​i​(​θ​i​, ​π​i​) for any 

type ​t​i​ with ​​  π​​i​(​t​i​) = ​π​i​ and ​​  θ​​i​(​t​i​) = ​θ​i​. Define 
​​
_
 y​​i​(​θ​i​, ​π​i​) = ​∑ ​t​−i​​ 

 
  ​ ​y​i​​(​​  t ​​i​(​θ​i​, ​π​i​), ​t​−i​) ​π​i​(​t​−i​). By (2),

 ​ V​i​(​θ​i​, ​θ​i​, ​​  ψ​​i​(​π​i​)) + ​​_ y​​i​(​θ​i​, ​π​i​)

	 ≥ ​V​i​(​θ​i​, ​θ​ i​ ′​, ​​  ψ​​i​(​π​i​)) + ​​_ y​​i​(​θ​ i​ ′​, ​π​i​)

for all ​θ​i​, ​θ​ i​ ′​ ∈ ​​   
 

 Θ​​i​(​π​i​). Thus, ​V​i​ satisfies cyclic 
monotonicity on (​​ ̂  

 
 Θ​​i​(​π​i​), ​​  ψ​​i​(​π​i​)).

Suppose ​V​i​ satisfies cyclic monotonicity on 
(​​   
 

 Θ​​i​(​π​i​), ​​  ψ​​i​(​π​i​)) for each ​π​i​ in the range of ​​  π​​i​. 
Thus there exists

	  ​​
_
 y​​i​(⋅, ​π​i​): ​​   

 
 Θ​​i​(​π​i​) → ℝ,

such that

 ​ V​i​(​θ​i​, ​θ​i​, ​​  ψ​​i​(​π​i​)) + ​​_ y​​i​(​θ​i​, ​π​i​)

≥ ​V​i​(​θ​i​, ​θ​ i​ ′​, ​​  ψ​​i​(​π​i​)) + ​​_ y​​i​(​θ​ i​ ′​, ​π​i​) 

for all ​θ​i​, ​θ​ i​ ′​ ∈ ​​   
 

 Θ​​i​(​π​i​). Since ​∑ ​t​−i​​ 
 
  ​ (​log ​π​i​(​t​−i​) − 

log ​π​ i​ ′​(​t​−i​))​π​i​(​t​−i​) > 0 for any ​π​ i​ ′​ ≠ ​π​i​  , (2) holds 
for y : T → ​ℝ​I​ given by ​y​i​(t) = ​​_ y​​i​(​​  θ​​i​(​t​i​),  ​​  π​​i​(​t​i​)) 
+ K log ​​  π​​i​(​t​i​)[​t​−i​] with sufficiently large K. (If 
​​     π​​i​(​t​i​)[​t​−i​] = 0, then we let ​y​i​(t) be a sufficiently 
small negative number.)

We note that the present result of partial 
implementation is stated for the (ex post) effi-
cient allocation rule ​i​*​(θ). But in fact, the above 
result is more generally valid for every allocation 
rule that is measurable with respect to the payoff 
type profile θ. The only modification arises with 
respect to the utility gains ​V​i​(⋅) from misreport-
ing the payoff type, ​θ​i​ to ​θ​ i​ ′​, which have to be 
adapted to the specific allocation rule. In fact, 
a slightly more general version of this result 
was reported in Proposition 6.2 of Bergemann 

and Morris (2003), a working paper version of 
Bergemann and Morris (2005), where general 
allocation problems were considered. In any 
case, the present result gives a sharp charac-
terization of how payoff types and belief types 
matter for efficient partial implementation. In 
particular, differences in beliefs about others’ 
types can be extracted for free, even if they are 
not payoff relevant. But once they are extracted, 
the non–payoff relevant content of the beliefs 
does not matter. All that matters is the implied 
belief over payoff types and the cyclic mono-
tonicity condition given by that implied belief 
over the payoff types and the set of possible 
payoff types who could have had the original 
(perhaps payoff irrelevant) belief. Classic suffi-
cient conditions for efficient partial implemen-
tation can now be seen as special cases of the 
above proposition:

(i) Private Values.—Under private values 
(i.e., ​v​i​(​θ​i​, ​θ​−i​) does not depend on ​θ​−i​), the con-
dition becomes vacuous as the cyclic monoto-
nicity conditions are satisfied.

(ii) Independent Types.—If the agents’ types 
are distributed independently (​​  π​​i​(​t​i​) does not 
depend on ​t​i​), then necessary and sufficient 
conditions for efficient partial implementation 
reduce to the cyclic monotonicity conditions on 
the entire set ​Θ​i​ of payoff types of each agent i 
for his fixed beliefs over others’ payoff types.

(iii) Linear Independence and Convex Hull.—
As noted by our discussant, Eric Maskin, for any 
set ​Ψ​i​ of linearly independent beliefs over oth-
ers’ payoff types, the cyclic monotonicity condi-
tions on the entire set ​Θ​i​ for all beliefs in ​Ψ​i​ are 
sufficient for efficient partial implementation if 
there is common knowledge that beliefs lie in 
the convex hull of ​Ψ​i​, which is less demand-
ing than the notion of ex post equilibrium. In a 
similar spirit, Jehiel, Moldovanu, and Meyer-
ter-Vehn (2012) investigate conditions for local 
robust incentive compatibility, and their Lemma 
1 establishes necessary monotonicity conditions 
for partial implementation, using the above sep-
aration of payoff types and belief types.

(iv) Belief Extraction.—Following Neeman 
(2004), say that “beliefs determine preferences” 
(BDP) if for every ​π​i​ ∈ Δ (​T​−i​), there exists 
at most one ​θ​i​ ∈ ​Θ​i​ such that ​​  π​​i​(​t​i​) = ​π​i​ and 
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​​  θ​​i​(​t​i​) = ​θ​i​ for some ​t​i​ ∈ ​T​i​. Under BDP, the 
cyclic monotonicity requirements of the propo- 
sition become vacuous.1

(v) Ex Post Incentive Compatibility.—As in 
the work of Maskin (1992) and Dasgupta and 
Maskin (2000), suppose that a single cross-
ing condition is satisfied with respect to the 
(ordered) payoff types of the agents, so that 
each ​v​i​ is strictly monotonic in ​θ​i​ and ​θ​ i​ ′​ > ​θ​i​ ⇒ 
​v​i​(​θ​ i​ ′​, ​θ​−i​) − ​v​i​(​θ​i​, ​θ​−i​) > ​v​j​(​θ​ i​ ′​, ​θ​−i​) − ​v​j​(​θ​i​, ​θ​−i​) 
for all i, j with i ≠ j. Then ​V​i​ satisfies cyclic 
monotonicity on (​Θ​i​, ​ψ​i​) for every ​ψ​i​ (which 
implies ex post incentive compatibility) and thus 
again it can be shown that the cyclic monotonic-
ity requirements of the proposition hold.2

(vi) Combining Belief Extraction and Private 
Values.—McLean and Postlewaite (2004) ana-
lyze efficient auctions with interdependent 
values and multidimensional types. More pre-
cisely, each agent has a two-dimensional pay-
off type ​θ​i​ = (​θ​ i​ i​, ​θ​ i​ c​), with an idiosyncratic and 
a common component, ​θ​ i​ i​ and ​θ​ i​ c​ , respectively, 
as reflected by the valuation function ​v​i​(θ) 
= ​v​ i​ i​(​θ​ i​ i​) + ​v​ i​ c​(​θ​c​). The common part of the val-
uation, ​v​ i​ c​(​θ​c​), depends on the entire profile of 
common components ​θ​c​ = (​θ​ 1​ c

 ​, …, ​θ​ I​ c​). Now, 
in terms of our language, their environment  
in Section 4 can be described by a type space 
​T​i​ = ​Θ​i​, the payoff types can be described 
by the identity mapping ​​  θ​​i​, and the belief types 
can be described by ​π​i​[​θ​i​](​(​θ​j​)​j≠i​) = ​π​ i​ c​[​θ​ i​ c​](​(​θ​ j​ c​)​j≠i​)  
⋅ ​π​ i​ i​(​(​θ​ j​ j​)​j≠i​). Finally, their condition of positive 
informational variability implies that the com-
mon component ​θ​ i​ c​ can be extracted from every 
agent i, and the residual private information ​θ​ i​ i​ 
is independent and pertains to the private value; 
and hence, again, our necessary and sufficient 
conditions are satisfied.

Importantly, Proposition 1 establishes only 
partial implementation, i.e., that the efficient 

1 Arguments going back at least to Cremer and McLean 
(1985) say BDP holds generically on finite type spaces, 
since if we fix a finite set of types and perturb beliefs, then 
they will all be different and BDP will hold. Recent contri-
butions, notably Heifetz and Neeman (2006), examine when 
BDP holds on infinite type spaces, and in particular if it can 
be said to hold “generically” on infinite type spaces. 

2 Such sufficient conditions do not naturally arise in mul-
tidimensional payoff type space  ​Θ​i​, expect for some special 
cases, as noted by Maskin (1992) and shown in much more 
general environments by Jehiel et al. (2006). 

allocation arises in some equilibrium, but 
there may exist other equilibria with inefficient 
allocations. Suppose there are three agents, 
I = 3, and each agent has two possible types, 
​Θ​1​ = ​ Θ​2​ = ​Θ​3​ = {0, 1}. Each agent’s valua-
tion of the object is given by

(3) 	  ​v​i​(θ)  = ​ θ​i​  + ​  2 _ 
3
 ​ ​∑ 

j≠i

 ​ 
 

  ​ ​θ​j​​.

Each agent has only two types, and thus a single 
belief type for each payoff type. Suppose, in par-
ticular, that if a type has valuation ​θ​i​, he assigns 
independent probability ​ 1 _ 8 ​ to each of the other 
agents having valuation ​θ​j​ = ​θ​i​, and the remain-
ing probability ​ 7 _ 8 ​ to ​θ​j​  =  1 − ​θ​i​.

Efficient partial implementation is possible in 
this example (by both a belief extraction argu-
ment, i.e., sufficient condition (iv) above, or an 
ex post incentive compatibility argument, e.g., 
sufficient condition (v) above). But observe that 
each type of each agent has an expected value of ​ 7 _ 6 ​ 
for the object. To see why, note that if agent 1, 
say, has ​θ​1​ = 1, his expectation of ​θ​2​ (or ​θ​3​) is ​ 1 _ 8 ​ , 
and, thus, his expectation of ​θ​1​ + ​ 2 _ 3 ​ ​θ​2​ + ​ 2 _ 3 ​ ​θ​3​  
= 1 + ​ 1 _ 12 ​ + ​ 1 _ 12 ​ = ​ 7 _ 6 ​. But if agent 1 has ​θ​1​ = 0, 
his expectation of ​θ​2​ (or ​θ​3​) is ​ 7 _ 8 ​ , and, thus, his 
expectation of ​θ​1​ + ​ 2 _ 3 ​ ​θ​2​ + ​ 2 _ 3 ​ ​θ​3​ = 0 + ​ 7 _ 12 ​ + ​ 7 _ 12 ​ 
= ​ 7 _ 6 ​. Thus, there will always be an equilibrium 
where both types of each player behave in the 
same way, which cannot give rise to the efficient 
allocation, as shown in a general payoff environ-
ment in Bergemann and Morris (2009).

Following Bergemann, Morris, and 
Takahashi (2011), we propose a natural 
description of agents’ types in this setting. An 
agent’s (unconditional) willingness to pay for 
the object does not depend on other agents’ 
types and, thus, has a natural meaning. If it 
makes sense to speak of all agents’ willingness 
to pay for the object, it makes sense to talk 
about an agent’s beliefs about other agents’ 
willingness to pay for the object, and his will-
ingness to pay conditional on others’ willing-
ness to pay for the object. Call the agent’s 
unconditional willingness to pay his first-order 
type. Call his beliefs over others’ willingness 
to pay and conditional willingness to pay his 
second-order type. Now we can inductively 
define an agent’s (n + 1)th order type to be 
his beliefs over others’ nth order types and his 
willingness to pay conditional on others’ nth 
order types. We can thus identify an agent with 
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a hierarchy of statements about preferences 
and conditional preferences.

In the simple setting of this note, such hier-
archies can be defined formally as follows. An 
nth-level type is pair ​t​n​ = (​b​n​, ​v​n​) consisting of 
a belief component and valuation component. 
Write ​T​n​ for the set of nth-level types that can 
arise in a finite type space. We describe the sets ​
T​n​ inductively. Let ​T​1​ = {∅} × ​ℝ​+​ with a typi-
cal first-level type ​t​1​ = (∅, ​v​1​) consisting of a 
degenerate belief type and an unconditional 
valuation of the object. Now an (n + 1)th-level 
type ​t​n+1​ = (​b​n+1​, ​v​n+1​) consists of a simple 
(i.e., finite support) probability distribution ​b​n+1​  
∈ Δ(​T​n​) with support supp(​b​n+1​) and a valuation 
function ​v​n+1​ : supp(​b​n+1​) → ​ℝ​+​. Now a hierar-
chy of types is a sequence of nth-order types 
(​t​1​, ​t​2​, …, ​t​n​, …) ∈ ​T​1​ × ​T​2​ × ⋯ × ​T​n​ × ⋯. 
A sequence of types is coherent if each 
(n + 1)th-type ​t​n+1​ induces beliefs over other 
agents’ (n − 1)th-level types and willingness to 
pay conditional on other agents’ (n − 1)th-level 
types that are consistent with those of ​t​n​. (We 
omit the formal statement of this condition). 
Now if we write ​T​ f​ *​ for the set of all coherent 
hierarchies of higher-order types that can arise 
in finite type spaces, we have a natural language 
in which to discuss agents’ types.

In Bergemann, Morris, and Takahashi (2011), 
we discuss the extension to infinite types and 
construct a universal space of higher-order 
preferences ​T​ *​ from hierarchies. We can iden-
tify those hierarchies with beliefs over others’ 
types and valuations conditional on their hier-
archies. Thus, we identify a type ​t​*​ ∈ ​T​ *​ with 
a probability measure over the types of others 
​b​*​ ∈ Δ((​T​ *​​)​I−1​) and an equivalence class of 
​b​*​-integrable valuation functions ​v​*​ : ​(​T ​*​)​ I−1​ → ℝ 
(where we identify two functions if they agree 
​b​*​–almost surely). In this sense, we have a 
canonical way of representing type spaces with 
a decomposition of types into “payoff types” 
and “belief types,” as we did earlier. However, it 
is important to realize that these payoff types do 
not specify valuations on 0-probability events.

This language is closely related to full imple-
mentation. Abreu and Matsushima (1992) 
showed that a necessary condition for Bayesian 
full implementation of a social choice function 
using a finite mechanism on a finite type space 
was that two types which had the same hierar-
chies of preferences received the same alloca-
tion. While they expressed this “measurability” 

condition as a property of the fixed finite type 
space, it can be expressed without reference to 
a particular finite type space as we described 
above. Thus, if full implementation is required, 
we can at most achieve constrained effi-
ciency, with the object allocated to the agent 
​i​**​(​t​ 1​ *​, …, ​t​ I​ *​) that maximizes ​v​ i​ *​[​t​ i​ *​](​t​ −i​ * ​), where ​
v​ i​ *​[​t​ i​ *​] denotes the payoff type component of ​t​ i​ *​, 
and Proposition 1 must hold on the coarser type 
space where types with the same hierarchy of 
preferences are merged.

Exact full implementation is generally not 
possible in the allocation of a single good: even 
with private values, while bidding one’s true 
value is a dominant strategy, it is often only a 
weak best response, and it is easy to construct 
inefficient equilibria in dominated strategies. 
For sufficient conditions for full implementation 
with finite mechanisms, the objective must be 
weakened to virtual implementation, so that 
​i​**​(​t​ 1​ *​, …, ​t​ I​ *​) is allocated the object with arbi-
trarily high probability. Abreu and Matsushima 
(1992) showed that virtual Bayesian full imple-
mentation is possible under Bayesian incentive 
compatibility and their measurability condition. 
In this context, this implies that the present con-
strained efficient allocation of the good is pos-
sible if the condition of Proposition 1 holds on 
the coarsened type space that is expressible in 
our language.3
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