
Available online at www.sciencedirect.com
ScienceDirect

Journal of Economic Theory 158 (2015) 427–465

www.elsevier.com/locate/jet

Information and volatility ✩

Dirk Bergemann a,∗, Tibor Heumann a, Stephen Morris b

a Department of Economics, Yale University, New Haven, CT 06520, USA
b Department of Economics, Princeton University, Princeton, NJ 08544, USA

Received 27 November 2013; final version received 4 December 2014; accepted 15 December 2014

Available online 23 December 2014

Abstract

In an economy of interacting agents with both idiosyncratic and aggregate shocks, we examine how the 
structure of private information influences aggregate volatility. The maximal aggregate volatility is attained 
in a noise free information structure in which the agents confound idiosyncratic and aggregate shocks, and 
display excess response to the aggregate shocks, as in Lucas [14]. For any given variance of aggregate 
shocks, the upper bound on aggregate volatility is linearly increasing in the variance of the idiosyncratic 
shocks. Our results hold in a setting of symmetric agents with linear best responses and normal uncertainty. 
We establish our results by providing a characterization of the set of all joint distributions over actions 
and states that can arise in equilibrium under any information structure. This tractable characterization, 
extending results in Bergemann and Morris [8], can be used to address a wide variety of questions linking 
information with the statistical moments of the economy.
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1. Introduction

Consider an economy of interacting agents, each of whom picks an action. Agents are subject 
to idiosyncratic and aggregate shocks. A classical economic question in this environment is to 
ask how aggregate and idiosyncratic shocks map into “aggregate volatility” – the variance of the 
average action. Versions of this question arise in many different economic contexts. In particu-
lar, a central question in macroeconomics is how aggregate and individual productivity shocks 
translate into variation in GDP. Another classical question is when and how asymmetric infor-
mation can influence this mapping, and in particular exacerbate aggregate volatility. A difficulty 
addressing this question is that the answer depends on the nature of the asymmetric information, 
something that is not easily observed. Thus results may be sensitive to the exact information 
structure assumed.

This paper considers a very simple stylized economy where we can completely character-
ize what can happen for all information structures. In particular, we consider a setting with a 
continuum of agents with linear best responses that depend on the average action of others and 
idiosyncratic and aggregate shocks. We assume that shocks, actions and signals are symmetri-
cally normally distributed across agents, maintaining symmetry and normality of the information 
structure. Our sharp characterization of what can happen across all information structures in this 
symmetric normal class can be used to address many economic questions of interest. In partic-
ular, we can study the two classical questions described above, providing an upper bound on 
aggregate volatility as a function of fundamentals and identifying the critical information struc-
tures that give rise to maximal volatility.

The information structure that maximizes aggregate volatility turns out to be “noise free”: 
each agent observes a one-dimensional signal which is a deterministic function of his idiosyn-
cratic and the aggregate shock. While there is no noise in such signals, they are imperfect because 
they leave the agent uncertain about the size of the idiosyncratic and aggregate shocks. The 
shocks are confounded in the agent’s signal. Aggregate volatility is highest when signals over-
weigh the aggregate shock relative to the idiosyncratic shock. In this case, agents who want to 
tailor their actions to their idiosyncratic shocks have no choice but to overweigh the aggregate 
shock, generating aggregate volatility. We show how maximum aggregate volatility increases 
linearly in the variance of the idiosyncratic shocks even if the variance of aggregate shocks is 
held constant. The critical noise free signal generating the maximal aggregate volatility puts 
proportionately more weight on the aggregate shock of constant variance as the variance of the 
idiosyncratic shock becomes larger. These noise free information structures are also critical for 
many questions of interest, including for dispersion (the variance of individual actions around 
the mean action) and individual volatility (the variance of individual actions, which is equal to 
the sum of aggregate volatility and dispersion). But different noise free information structures 
maximize these variables. Thus dispersion is highest when signals overweigh the idiosyncratic 
shock relative to the aggregate shock. In this case, agents who want to tailor their actions to their 
aggregate shocks have no choice but to overweigh the idiosyncratic shock, generating dispersion. 
The fact that confounding shocks can lead to overreaction has been long recognized, notably by 
Lucas [14] and more recently by Hellwig and Venkateswaran [11] and Venkateswaran [21]. Our 
contribution is to highlight that, in this setting with idiosyncratic and aggregate shocks, noise 
free confounding information structures are extremal and provide global bounds on how much 
volatility can arise via the information structure. The intuition for the bounding result is simple 
and comes in two parts. First, suppose that agents observed a one-dimensional signal that was 
a linear function of the idiosyncratic shock, the aggregate shock and a noise term which may 



D. Bergemann et al. / Journal of Economic Theory 158 (2015) 427–465 429
be correlated across agents. Equilibrium actions must be linear in the signal. The impact of the 
noise in the signal must be to dampen the response of agents to the signal and thus to both the 
idiosyncratic and aggregate shocks. Thus among one-dimensional symmetric information struc-
tures, noise free information structures generate the most volatility. Second, imagine any other, 
perhaps multidimensional and perhaps noisy, symmetric information structure. By symmetry, 
each agent’s equilibrium action choice (assumed to be one-dimensional) can be expressed as 
a linear function of the idiosyncratic shock, the aggregate shock and a noise term which may 
be correlated across agents. Now we can replace the original information structure by the one-
dimensional one where each agent observes a signal which is linear in the equilibrium action
he would have chosen under the old information structure. Equilibrium in this new information 
structure will now generate the same outcomes as the equilibrium with the richer information 
structure. Thus it is enough to study one-dimensional information structures where signals are a 
linear function of the idiosyncratic shock, the aggregate shock and a noise term which may be 
correlated across agents.

We provide a complete characterization of the symmetric equilibrium distributions of indi-
vidual actions, aggregate actions, idiosyncratic shocks and aggregate shocks that can arise for a 
given distribution of payoff shocks across all possible information structures. The direct charac-
terization of all feasible equilibrium distributions – independent of the information structure –
makes use of a solution concept, Bayes correlated equilibria, introduced in earlier work by two 
of us, Bergemann and Morris [8]. Namely, the set of Bayes correlated equilibrium distributions is 
equal to the set of Bayes Nash equilibrium distributions under all possible information structures. 
And in particular, the boundary of the set of Bayes correlated, and hence Bayes Nash equilibria, 
can be written as the (Bayes Nash) equilibrium of some noise free and one-dimensional informa-
tion structure. The resulting bounds of the aggregate volatility are independent of the assumption 
of normality of the shocks, and only depend on the variance of the idiosyncratic and the aggregate 
shocks.

While noise free information structures generate maximal aggregate volatility with both id-
iosyncratic and aggregate shocks, this is not longer true if there are only idiosyncratic shocks. In 
this case, if each agent responded to his idiosyncratic shock only, there would be no aggregate 
volatility by the law of large numbers. On the other hand, if each agent had no information about 
his idiosyncratic shock, his action would be constant and there would again be no aggregate 
volatility. The information structure which maximizes aggregate volatility would be one where 
each agent observes his idiosyncratic shock with an intermediate level of noise, and where the 
noise in agents’ signals is perfectly correlated. Angeletos and La’O [4] have analyzed the role 
of such aggregate shocks to beliefs about purely idiosyncratic uncertainty in a macroeconomic 
model, describing them as “sentiment” shocks. How can we relate this finding that – with only 
idiosyncratic shocks – adding noise maximizes aggregate volatility to our finding that – adding 
aggregate shocks – noise can only decrease aggregate volatility? We can reconcile the results 
by considering what happens if we let the variance of aggregate shocks decline towards zero in 
our model. In this case, our results show that the information structure that maximizes aggregate 
volatility is a noise free information structure where the signal puts a larger and larger weight on 
the aggregate shock and a smaller and smaller weight on the idiosyncratic shock. The agent – in 
order to respond to the idiosyncratic shock at all – must put a larger and larger weight on the sig-
nal. The total sensitivity to the aggregate shock (multiplying the weight on the aggregate shock in 
the signal with the weight on the signal in the equilibrium strategy) converges to a constant as the 
aggregate shock disappears. In the limit the dependence on the aggregate payoff shock becomes 
dependence on a common, payoff irrelevant, noise term, i.e., the sentiment shock. Thus this pa-
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per highlights a tight connection between noise free, but confounding information structures and 
sentiment shocks.

The results described thus far hold independently of whether the weight on the average ac-
tion, r , is negative (the strategic substitutes case), zero (the purely decision theoretic case) or 
positive (the strategic complementarities case). A striking property of our characterization of 
Bayes correlated equilibria – i.e., what can happen in all symmetric information structures – is 
that the set of feasible correlations between individual and average actions and individual and ag-
gregate shocks is independent of r and determined only by statistical constraints. There are three 
degrees of freedom in describing the correlation structure: the correlation between each agent’s 
action and his individual shock (the sum of the aggregate shock and his idiosyncratic shock), the 
correlation between any two agents’ actions, and the correlation between any agent’s action and 
any other agent’s individual shock. On the other hand, once one pins down the correlation struc-
ture, the mean and variance of individual actions are pinned down. The best response parameter 
r describes how to translate correlation structures into first and second moments. Thus there is a 
three-dimensional class of Bayes correlated equilibria which is extremely tractable.

While we can restrict attention to one-dimensional information structures in deriving bounds 
on volatility, we may want to assume that agents have access to particular class of (possibly 
multidimensional) signals. In general, this will impose restrictions on the set of Bayes Nash 
equilibria and the upper bounds on volatility cannot necessarily be obtained. For example, in 
Angeletos and La’O [4], each agent knows his individual payoff shock but remains uncertain 
about the payoff shock of the other agents. In Angeletos and Pavan [6] the agents have access 
to a rich three-dimensional class of normal signals, and even though the set of Bayes correlated 
equilibria is also three-dimensional, the information structures of Angeletos and Pavan [6] do not 
give rise to maximal volatility.

This paper is an application of a general approach to analyzing equilibrium behavior of agents 
for a given description of the fundamentals for all possible information structures. In Bergemann 
and Morris [9], we consider this problem in a canonical game theoretic setting and show that 
a general version of Bayes correlated equilibrium characterizes the set of outcomes that could 
arise in any Bayes Nash equilibrium of an incomplete information game where agents may have 
access to more information beyond the given common prior over the fundamentals. In Bergemann 
and Morris [8] we pursue this argument in detail and characterize the set of Bayes correlated 
equilibria in the class of games with quadratic payoffs and normally distributed uncertainty, 
but there we restrict our attention to the special environment with aggregate shocks only. By 
providing a complete analysis of the impact of information in a simple linear quadratic model 
with both idiosyncratic and aggregate payoff shocks, we can connect with richer macroeconomic 
and other applied models that work with parameterized classes of information structures.

The remainder of the paper is organized as follows. Section 2 introduces the model. Sec-
tion 3 introduces the noise free information structures and analyzes the Bayes Nash equilibrium 
behavior for this class of information structures. Section 4 derives the maximal volatility and 
dispersion in a benchmark model without strategic interaction. We identify the specific noise 
free information structure that attains the maximal volatility, and thus establish the link between 
information and volatility. Section 5 examines how the strategic interaction affects how the in-
formation structure impacts the statistical moments of the economy. In Section 6, we introduce 
symmetric Bayes correlated equilibria and establish an equivalence between the set of Bayes cor-
related equilibria and the set of Bayes Nash equilibria under any symmetric normal information 
structure. Section 7 then considers some particular information structures that have been studied, 
and highlights the subtle restrictions that such modelling choices imposes on the equilibrium 
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behavior. Section 8 indicates how the present analysis extends beyond aggregate interaction to 
allow for richer, network like, interaction structures. Finally, we apply the currents insights to the 
related literature on information sharing and obtain optimal information sharing rules that differ 
and improve upon those appearing in the literature. Appendix A contains most of the proofs.

2. Model

We consider a continuum of agents, with mass normalized to 1. Agent i ∈ [0, 1] chooses an 
action ai ∈ R and is assumed to have a quadratic payoff function,

ui : R3 →R,

which is function of his action ai , the mean action taken by all agents, A,

A �
∫
j

aj dj,

and the individual payoff shock, θi ∈R, thus ui(ai, A, θi).
We assume that the individual payoff shock θi is given by the sum of an aggregate shock θ̄

and an idiosyncratic shock �θi :

θi = θ̄ + �θi.

The aggregate shock θ̄ is common to all agents and the idiosyncratic shock �θi is identically 
and independently distributed across agents, as well as independent of the aggregate shock. Each 
component of the payoff shock θi is normally distributed. The payoff environment is thus com-
pletely described by the pair (θ, �θi) of random variables,(

θ

�θi

)
∼N

((
μθ

0

)
,

(
σ 2

θ
0

0 σ 2
�θi

))
, (1)

which form the commonly known common prior. The sample average of the idiosyncratic shocks 
across all agents always equals zero. We denote the sample average across the entire population, 
that is across all i, as Ei[·], and so Ei[�θi] = 0. The aggregate shock can be interpreted as the 
sample mean or average payoff shock, and so θ̄ = Ei[θi].

Given the independence and the symmetry of the idiosyncratic shock �θi across agents, the 
variance of the individual payoff shock θi can be expressed in terms of the variance of the sum 
of the idiosyncratic and the aggregate shock:

σ 2
θ � σ 2

θ
+ σ 2

�θi
. (2)

The correlation (coefficient) ρθθ between the payoff shocks of any two agents i and j , θi and θj

is given by,

ρθθ = σ 2
θ

σ 2
θ

+ σ 2
�θi

, (3)

and the covariance between individual payoff shocks θi and θj equals the covariance between the 
individual shock θi and the aggregate shock θ . Thus, the correlation coefficient ρθθ represents a 
measure of the “commonality” of the shocks across agents. Separately, from the perspective of a 
given agent i, the correlation coefficient ρθθ measures the relative contribution of the aggregate 
shock θ to the individual shock of agent i, θi = θ̄ + �θi .
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Given the quadratic property of the payoff function, each agent i has a linear best response 
function:

ai = rE[A|Ii] +E[θi |Ii], (4)

where E[·|Ii] is the expectation conditional on the information Ii that agent i has prior to taking 
an action ai . The parameter r ∈R of the best response function represents the strategic interaction 
among the agents. If r < 0, then we have a game of strategic substitutes, if r > 0, then we have 
a game of strategic complements.

For future reference, we briefly describe the Nash equilibrium under complete information. If 
each agent observes the idiosyncratic and the aggregate shock separately, and hence receives the 
two-dimensional signal (�θi, θ̄ ), then the linear best response function gives rise the symmetric 
Nash equilibrium strategy:

ai(�θi, θ̄ ) � �θi + θ̄

1 − r
. (5)

In the complete information equilibrium, each agent assigns weight 1 to the idiosyncratic shock 
�θi , and weight 1/(1 − r) to the aggregate shock θ̄ . We assume that the interaction parame-
ter r is bounded above, or r ∈ (−∞, 1), which guarantees that there is a unique interior Nash 
equilibrium.1

The present model of a continuum of players with quadratic payoffs and normally distributed 
idiosyncratic and aggregate shocks was first proposed by Vives [23] to analyze information shar-
ing among agents with private, but noisy, information about the fundamentals. While the focus of 
the present paper is rather different, we shall briefly indicate in the conclusion how our approach 
also yields new insights to the large literature on information sharing. In the information sharing 
literature, the aggregate and the idiosyncratic shock, are often referred to as the common value 
and the private value component of the payoff shock θi .

3. Noise free Bayes Nash equilibrium

We begin the analysis by considering a class of noise free information structures and then 
derive the Bayes Nash equilibrium behavior under these one-dimensional information structures. 
We consider the following one-dimensional class of signals:

si � λ�θi + (1 − λ)θ̄ , (6)

where the linear composition of the signal si is determined by the parameter λ ∈ [0, 1]. We 
restrict attention to symmetric information structures (across agents), all agents have the same 
parameter λ, and hence simply refer to the noise free information structure λ. In the present 

1 The best response (4) normalizes the weight on the payoff shock θi to 1 and assigns the weight r to the average 
action A. A subset of us adopted this normalization, Bergemann and Morris [8], and we can directly contrast the results 
of the pure aggregate shock model there with the model of idiosyncratic and aggregate shocks here. An alternative 
normalization would assign weights 1 − r to the payoff shock and r to the average action, as in Morris and Shin [16]
or Angeletos and Pavan [5]. With pure aggregate shocks, the later normalization has the advantage that under complete 
information, the equilibrium volatility of the individual or the aggregate action is independent of r , whereas in the 
present model r scales the volatility. Yet, in a general model with idiosyncratic and aggregate shocks even the complete 
information volatility is affected by r (since then ai (�θi , θ) = (1 − r)�θi + θ ) and hence this normalization would also 
fail to preserve the invariance property for the individual volatility.
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section, we consider the case of idiosyncratic and aggregate shocks, thus ρθθ ∈ (0, 1), and we 
discuss the limit cases of pure idiosyncratic and pure aggregate shocks, thus ρθθ ∈ {0, 1}, in the 
next section.

The information structure λ is noise free in the sense that every signal si is a linear combina-
tion of the idiosyncratic and the aggregate shock, �θi and θ̄ , and no extraneous noise or error 
term enters the signal of each agent. Nonetheless, since the signal si combines the idiosyncratic 
and the aggregate shock, each signal si leaves agent i with residual uncertainty about the con-
tribution of the idiosyncratic and aggregate shock respectively. Moreover, unless the weight λ in 
the information structure exactly mirrors the composition of the payoff shock, θi = θ̄ + �θi , and 
hence exactly equals 1/2, agent i still faces residual uncertainty about his payoff shock θi . Thus, 
the signal confounds the two sources of payoff uncertainty.

Given the information structure λ, we can compute the conditional expectation of agent i
given the signal si about the idiosyncratic shock �θi :2

E[�θi |si] = cov(�θi, si)

var(si)
= (1 − ρθθ )λ

ρθθ (1 − λ)2 + (1 − ρθθ )λ2
si , (7)

the aggregate shock θ :

E
[
θ |si

] = cov(θ, si)

var(si)
= ρθθ (1 − λ)

ρθθ (1 − λ)2 + (1 − ρθθ )λ2
si , (8)

and the payoff shock θi of agent i:

E[θi |si] = cov(θi, si)

var(si)
= ρθθ (1 − λ) + (1 − ρθθ )λ

ρθθ (1 − λ)2 + (1 − ρθθ )λ2
si . (9)

For the above conditional expectations, it is only the relative size of idiosyncratic and aggregate 
shocks, thus ρθθ , that matters rather than the level of the shocks, the variance σ 2

�θi
and σ 2

θ
.

A few noise free information structures are of particular interest. If λ = 1/2, then each agent 
knows his own payoff shock θi , as (9) reduces to E[θi |si] = 2si = �θi + θ̄ , but remains uncertain 
about the exact value of the idiosyncratic and aggregate shock. Similarly, if λ = 0, then the 
aggregate shock is known with certainty by each agent, as E[θ|si] = si = θ , but there remains 
residual uncertainty about the idiosyncratic shock �θi and a fortiori about the payoff shock θi . 
Likewise, if λ = 1, then the idiosyncratic shock is known with certainty, as E[�θi|si] = si = �θi , 
but there remains residual uncertainty about the aggregate shock θ̄ and a fortiori about the payoff 
shock θi .

We record the standard solution concept for games of incomplete information.

Definition 1 (Bayes Nash equilibrium). The strategy profile a∗ : R→R forms a pure strategy 
symmetric Bayes Nash equilibrium if and only if:

a∗(si) = E

[
θi + r

∫
a∗
j (sj )dj

∣∣∣ si

]
, ∀si ∈ R.

2 For the remainder of the paper, we report all of the conditional expectations under the normalization of μ
θ

= 0. With 
μ

θ
�= 0, the conditional expectations, such as (7)–(9) below, are given by a convex combination of the signal si and 

prior mean μ
θ

. By normalizing μ
θ

= 0, the statistical expressions become easier to read with minor loss of generality. 
By contrast, the description of the equilibrium in terms of mean and variance, as in Proposition 2, are always stated for 
μ ∈ R.
θ
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The construction of a linear and symmetric equilibrium strategy in the multivariate normal 
environment is by now standard, see Vives [24] and Veldkamp [20]. Given an information struc-
ture λ, we denote the responsiveness, and in the linear strategy, the slope of the strategy in the 
signal si , by w(λ).

Proposition 1 (Noise free BNE). For every noise free information structure λ, there is a unique 
Bayes Nash equilibrium and the strategy of each agent i is linear in the signal si:

a∗
i (si) = w(λ)si, (10)

with weight w(λ):

w(λ) = ρθθ (1 − λ) + (1 − ρθθ )λ

(1 − r)ρθθ (1 − λ)2 + λ2(1 − ρθθ )
. (11)

The responsiveness of the individual strategy is in general affected by the interaction param-
eter r , but in the special case of r = 0, each agent solves a pure statistical prediction problem 
and the optimal weight corresponds to the Bayesian updating rule given by (9). If r > 0, then 
the agents are in a game with strategic complements and respond stronger to the signal than 
Bayesian updating would suggest because of the inherent coordination motive with respect to 
the aggregate shock represented by the weight ρθθ(1 − λ)2.

In every noise free information structure, the best response of each agent i is always summa-
rized by a scalar, w(λ). To understand the impact the information structure has on the outcome of 
the equilibrium we provide a statistical description in terms of first and second moments of the 
variables (actions and payoff shocks) induced by an equilibrium. Given the information struc-
ture λ and the linearity of the unique Bayes Nash equilibrium, we can immediately derive the 
properties of the joint distribution of the equilibrium variables.

Proposition 2 (Moments of the noise free BNE). For every noise free information structure λ:

1. the mean of the individual and the aggregate action is:

E[ai] � μa = μθ/(1 − r) = μA � E[A];
2. the variance of the individual action is:

var(ai) � σ 2
a = w(λ)2(ρθθ (1 − λ)2 + (1 − ρθθ )λ

2)σ 2
θ ; (12)

3. and the variance of the aggregate action is:

var(A) = cov(ai, aj ) � ρaaσ
2
a = w(λ)2ρθθ (1 − λ)2σ 2

θ . (13)

The mean of the individual and the aggregate action is only a function of the mean μθ of 
the payoff shock θi and the interaction parameter r , and thus is invariant with respect to the 
composition of the payoff shocks in terms of idiosyncratic and aggregate shocks and invariant 
with respect to the information structure λ. By contrast, the second moments, respond to the 
composition of the shocks as represented by the correlation coefficient ρθθ and to the information 
structure λ. Given the normal distribution of the payoff shocks, and the linearity of the strategy, 
the variance and covariance terms are naturally the products of the weights, λ and w(λ), and the 
variance σ 2 of the fundamental uncertainty.
θ
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In the symmetric environment, the variance of the aggregate action, var(A), coincides with 
covariance between any pair of actions by agents i and j , ai and aj , cov(ai, aj ), and we denote 
the correlation coefficients by ρaa . The covariance between the action ai and the payoff shock θi

of agent i, is given by:

cov(ai, θi) � ρaθσaσθ = w(λ)
(
ρθθ (1 − λ) + (1 − ρθθ )λ

)
σ 2

θ

= ρθθ (1 − λ) + (1 − ρθθ )λ√
ρθθ (1 − λ)2 + (1 − ρθθ )λ2

σ 2
θ , (14)

whereas the covariance between the action ai of agent i and the payoff shock θj of another agent 
j is given by:

cov(ai, θj ) � ρaφσaσθ = w(λ)(1 − λ)ρθθσ
2
θ = cov(ai, θ̄ ) = cov(A, θ). (15)

We denote the corresponding correlation coefficients by ρaθ and ρaφ , respectively.
As the above equalities indicate, in the symmetric environment, the covariance between the 

individual action ai of agent i and the payoff shock θj of another agent j , cov(ai, θj ), is equal 
to the covariance between the aggregate action A and aggregate shock θ . After all, the idiosyn-
cratic element vanishes in the covariance between ai and θj , and what remains is the covariance 
between the common terms, A and θ . Importantly though, the correlation coefficients ρaφ and 
ρAθ differ as we can compute that

ρaφ = (1 − λ)ρθθ√
(ρθθ (1 − λ)2 + (1 − ρθθ )λ2)

,

but

ρAθ = 1.

Thus under any noise free information structure parametrized by λ, the aggregate action A is 
perfectly correlated with the aggregate shock θ .

In their statistical content, the correlation coefficients reflect the direction in the relationship of 
any two random variables. Hence, the interaction parameter r which only affects the slope of the 
equilibrium strategy, but not the composition of the signals, does not appear in the expression of 
the equilibrium correlation coefficients. Thus, for a given noise free information structure λ, we 
could, as an alternative to Proposition 2 completely characterize the Bayes Nash equilibrium in 
terms of the correlation coefficients (ρaa, ρaθ , ρaφ). This triple only depends on the composition 
of the payoff shocks, ρθθ and the information structure λ. We could then recover all the mo-
ments of the equilibrium distribution, such as mean and variance, from the triple of correlation 
coefficients and the interaction parameter r .

4. Individual decisions and aggregate volatility

We first consider aggregate volatility in the absence of any strategic interaction, and thus we 
are setting the strategic parameter r equal to zero. While we focus on aggregate volatility, we 
will also report results for individual volatility and dispersion.

With r = 0, the best response of each agent simply reflects a statistical prediction problem, 
namely to predict the payoff shock θi given the signal si :

ai = E[θi |si] = (1 − λ)ρθθ + λ(1 − ρθθ )

2 2
si . (16)
(1 − λ) ρθθ + λ (1 − ρθθ )
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The individual prediction problem is more responsive to the signal si if and only if the signal 
contains more information about the payoff shock θi . As we observed, the noise free information 
structure λ = 1/2 allows each agent to perfectly infer the individual payoff shock θi . It follows 
that the responsiveness, and hence the variance of the individual action σ 2

a is maximized at 
λ = 1/2:

σ 2
a = σ 2

θ̄
+ σ 2

�θi
.

Now, to the extent that the individual payoff shocks θi and θj are correlated, we find that even 
though each agent i only solves an individual prediction problem, their actions are correlated 
by means of the underlying correlation of the individual payoff shocks. Under the information 
structure λ = 1/2 the aggregate volatility is

σ 2
A = ρaaσ

2
a = σ 2

θ̄
.

We can now ask whether the aggregate volatility can reach higher levels under information struc-
tures different from λ = 1/2. As the information structure departs from λ = 1/2, we necessarily 
introduce a bias in the signal si towards one of the two components of the payoff shock θi . 
Clearly, the signal si is losing informational quality with respect to the payoff shock θi as λ
moves away from 1/2. Thus the individual prediction problem (16) is becoming noisier, and 
in consequence the response of the individual agent to the signal si is attenuated. But a larger 
weight, 1 − λ, on the aggregate shock θ , may support correlation in the actions across agents, 
and thus support larger aggregate volatility. At the same time, the response of the agent is likely 
to be attenuated, and thus a trade-off appears between bias and loss of information. We then ask 
what is the maximal aggregate volatility that can be sustained across all noise free information 
structures.

Proposition 3 (Maximal aggregate volatility). The maximal aggregate volatility:

max
λ

{
var(A)

} =
(σθ̄ +

√
σ 2

θ̄
+ σ 2

�θi
)2

4
, (17)

is achieved by the information structure λ∗:

λ∗ � arg max
λ

{
var(A)

} = σθ̄

2σθ̄ +
√

σ 2
θ̄

+ σ 2
�θi

<
1

2
. (18)

The aggregate volatility is maximized by an information structure which biases the signal 
towards the aggregate shock.

We recall from (2) that the total variance of the payoff shock θi is given by σ 2
θ = σ 2

θ̄
+σ 2

�θi
. By 

a change of variable, we can express the variance of the idiosyncratic and aggregate components 
of the shocks in terms of the total variance of the payoff shock θi and the correlation coefficient 
ρθθ , thus

σ 2
θ̄

= ρθθσ
2
θ , σ 2

�θi
= (1 − ρθθ )σ

2
θ . (19)

We can then express the information structure that maximizes the aggregate volatility in terms of 
the correlation coefficient ρθθ :

arg max
{
var(A)

} =
√

ρθθ√ ,

λ 1 + 2 ρθθ
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and the maximal volatility given by (17) can be expressed as:

max
λ

{
var(A)

} = 1

4
(1 + √

ρθθ )2σ 2
θ .

Thus, as we approach the environment with aggregate shocks only, ρθθ → 1 (and equivalently 
as the contribution from the idiosyncratic shock vanishes with σ 2

�θi
→ 0), the maximal aggregate 

volatility of the actions coincides with the variance of the aggregate shock. This is achieved in 
a complete information equilibrium in which the action of each agent matches the realization of 
the payoff shock θi . As all of the variance in the payoff shock θi stems from the aggregate shock, 
the variance of the individual action is attained by the variance of the average action.

More surprisingly, as we approach an environment with purely idiosyncratic shocks, the max-
imal aggregate volatility does not converge to zero, rather it is bounded away from 0, and given 
by σ 2

�θi
/4, as stated in the following Corollary of Proposition 3.

Corollary 1 (Maximal volatility with aggregate or idiosyncratic shocks only). The maximal 
volatility with aggregate shocks only is limσ 2

�θi
→0 maxλ{var(A)} = σ 2

θ̄
, with idiosyncratic shocks 

only is limσ 2
θ̄
→0 maxλ{var(A)} = σ 2

�θi
/4.

If the individual payoff shock is increasingly dominated by the idiosyncratic shock, then the 
information structure puts more and more weight on the aggregate shock which itself has dimin-
ishing variance. The volatility maximizing information structure amplifies the response to the 
small aggregate shock and hence maintains a substantial correlation in the signals (and actions) 
across the agents, even though the payoff shocks are almost purely idiosyncratic and thus almost 
independent. If we consider the ratio of the weighted standard deviations of the aggregate and 
idiosyncratic shocks, where the weights are determined by the information structure λ∗, then we 
find that

(1 − λ∗)σθ̄

λ∗σ�θi

= 1 + √
ρθθ√

1 − ρθθ

,

and in the limit as ρθθ → 0 (or equivalently as σθ̄ → 0),

lim
σθ̄→0

{
(1 − λ∗)σθ̄

λ∗σ�θi

}
= 1. (20)

Thus, the economy can maintain a large aggregate volatility even in the presence of vanishing 
aggregate payoff shocks by confounding the payoff relevant information about the idiosyncratic 
shock with the (in the limit) payoff irrelevant information about the aggregate shock.

In Section 3 we analyzed the equilibrium behavior in the noise free information structures 
assuming idiosyncratic and aggregate shocks, and hence confining the analysis to ρθθ ∈ (0, 1). 
The above limit argument towards idiosyncratic shocks only suggests that as long as there is some 
arbitrarily small variation in the payoff shock, the signal can always amplify the informational 
importance of the shock much beyond its payoff importance. But, if there is no variance in 
either the idiosyncratic or the aggregate shock, then of course no amplification of those shocks is 
possible. Nonetheless, the limits in Corollary 1 can still be attained with zero variance in either 
one of the shocks, but now require noise in the signal that is payoff irrelevant. We illustrate this 
for the case of idiosyncratic payoff shocks only. Thus, consider an information structure in which
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each agent i observes a signal that contains an error ε, common to all agents, with mean 0 and 
variance σ 2

ε ,

si = �θi + ε. (21)

Given the signal si , the best response of agent i is

ai = E[�θi |si = �θi + ε] = σ 2
�θi

σ 2
�θi

+ σ 2
ε

si , (22)

and it follows that the realized average action A is, as the idiosyncratic shock �θi integrates out,

A = σ 2
�θi

σ 2
�θi

+ σ 2
ε

ε.

The resulting variance of the average action, the aggregate volatility is:

σ 2
A =

(
σ 2

�θi

σ 2
�θi

+ σ 2
ε

)2

σ 2
ε ,

and the aggregate volatility is maximized by setting the variance of the error term equal to the 
variance of the idiosyncratic shock:

σ 2
ε = σ 2

�θi
. (23)

This results in a positive level of aggregate volatility σ 2
A driven by purely idiosyncratic payoff 

shocks σ 2
�θi

:

σ 2
A = 1

4
σ 2

�θi
.

The noisy information structure (21) thus achieves the limit of Corollary 1 with the noise to 
signal ratio of 1 implied by (23), which we derived earlier in (20) as the limiting ratio.

The maximal aggregate volatility is therefore achieved by an information structure that finds 
an optimal trade-off between biasing the information towards the aggregate shock, and here 
simply the common error, and maintaining responsiveness of agent i towards the signal si as 
given by the best response condition (22). Specifically, an increase in the variance σ 2

ε of the error 
term leads to larger aggregate volatility only if the response of each agent to the signal does not 
become too attenuated. As the slope σ 2

�θi
/(σ 2

�θi
+ σ 2

ε ) of the best response is decreasing in the 
variance σ 2

ε of the error term, the idiosyncratic payoff shock can only absorb a finite variance of 
the error term, namely σ 2

ε = σ 2
�θi

, before the response to the signal becomes too weak to generate 
additional aggregate volatility.

In the special cases of pure idiosyncratic or pure aggregate shocks, the payoff uncertainty 
is described completely by either �θi or θ̄ , and reduces from a two-dimensional to a one-
dimensional space of uncertainty. In either case, across all λ ∈ [0, 1], there are only two possible 
noise free equilibrium outcomes. Namely, either players respond perfectly to the shock of the 
world (complete information) or players do not respond at all (zero information). For example, 
with idiosyncratic shocks only, that is ρθθ = 0, we have σ 2

�θi
= σ 2

θ , and σ 2
θ̄

= 0. Then, the signal 
si is perfectly informative for all λ �= 0 about the idiosyncratic shock, and we are effectively in 
a complete information setting. By contrast, if λ = 0, then the signal si is completely uninfor-
mative, and each agent makes a deterministic choice given the expected value E[�θi] = 0 of the 
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shock. Correspondingly, for purely aggregate shocks, the critical value for which the information 
structure is completely uninformative is λ = 1. Therefore there is a discontinuity at ρθθ ∈ {0, 1}
in the set of noise free Bayes Nash equilibria, but as the construction of the noisy information 
structure (21) suggests there is no discontinuity in the set of outcomes. The reason is simple and 
stems from the fact that as ρθθ approaches 0 or 1, one of the dimensions of payoff uncertainty 
vanishes. Yet we should emphasize, that even as the payoff shocks approach the case of pure 
aggregate or pure idiosyncratic shocks, the part of the fundamental that becomes small can be 
arbitrarily amplified by the informational weight λ. For example, as ρθθ → 1, the idiosyncratic 
shock �θi can still be amplified by letting λ → 1 in the construction of the signal (6) above. 
Thus, the idiosyncratic shock �θi acts like a purely idiosyncratic noise in an environment with 
aggregate shocks. After all, the idiosyncratic shock �θi only affects the payoffs in a negligible 
way, but with a large enough weight, it has a non-negligible effect on the actions that the players 
take. This suggests that for the case in which the correlation of shocks approaches the case of 
pure aggregate or pure idiosyncratic shocks, there is no longer a sharp distinction between what 
is noise and what is fundamentals.

The dispersion of the individual action, �ai � ai −A, is the volatility of the individual action 
beyond the aggregate volatility:

var(�ai) = (1 − ρaa)σ
2
a .

The analysis of the maximal dispersion is entirely symmetric to the one for aggregate volatility 
after we redefine the relevant variables in the obvious way:

λ̃ � (1 − λ), ρ̃θθ � (1 − ρθθ ).

The result below then follows directly from Proposition 3.

Corollary 2 (Maximal dispersion). The maximal dispersion:

max
λ

{
var(�ai)

} = 1

4

(
1 +√

1 − ρθθ

)2
σ 2

θ ;

is achieved by the information structure λ:

arg max
λ

{
var(�ai)

} = 1 + √
1 − ρθθ

1 + 2
√

1 − ρθθ

>
1

2
.

5. Strategic decisions and aggregate volatility

We proceed to analyze the aggregate volatility in the presence of strategic interaction. We 
thus return to the general model with r ∈ (−∞, 1) rather than r = 0 as in the previous section. 
For each individual agent the responsiveness of the action to the signal will now depend on the 
informational content of the signal as well as the structure of the interaction.

An instructive benchmark for the responsiveness of the action to the signal is the behavior 
in the complete information equilibrium. Under complete information, each agent separately 
observes the idiosyncratic and aggregate shock, thus each player observes a noise free, but two-
dimensional signal (θ̄ , �θi). The resulting equilibrium strategy is linear in the shocks and assigns 
weight 1 to the idiosyncratic shock �θi , and weight 1/(1 − r) to the aggregate shock θ̄ , see (5). 
Given the linearity of the complete information strategy, a specific one-dimensional noise free 
information structure can replicate the outcome under the two-dimensional complete information 
structure. In particular, the one-dimensional information structure ̂λ with
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λ̂� 1 − r

2 − r
, (24)

is the unique information structure λ ∈ [0, 1] such that for every realized pair of shocks, (�θi, θ̄ )

and every signal realization si ,

si = λ̂�θi + (1 − λ)θ̄ ,

the equilibrium action

a∗
i (si) = �θi + θ̄

1 − r

coincides with the complete information equilibrium action. Thus for every level of strategic 
interaction, r , there is a noise free information structure ̂λ under which the agents’ equilibrium 
behavior exactly mimics the complete information Nash equilibrium. Moreover, by inspecting 
the responsiveness to the signal, w(λ), derived earlier in Proposition 1, we find that λ̂ is the 
unique information structure among all λ ∈ [0, 1] such that the responsiveness w(λ) is invariant 
to the relative contribution of the aggregate and idiosyncratic shock, and hence invariant with 
respect to the value of ρθθ , namely

w
(
λ̂
) = 1

λ̂
= 2 − r

1 − r
.

In particular, the Bayes Nash equilibrium under the information structure ̂λ always reproduces 
the complete information outcome, independent of the composition of the shocks.

We now decompose the responsiveness of the individual action ai into the components of 
the payoff shock θi , namely the idiosyncratic shock �θi and the aggregate shock θ̄ . Given the 
multivariate normal distribution, the responsiveness of the action can be expressed in terms of 
the covariance:

∂E[ai |�θi]
∂�θi

= cov(ai,�θi)

σ 2
�θ

= λw(λ),
∂E[ai |θ ]

∂θ
= cov(ai, θ)

σ 2
θ̄

= (1 − λ)w(λ). (25)

Proposition 4 (Responsiveness to fundamentals). In the noise free Bayes Nash equilibrium with 
information structure λ:

1. λ ∈ (̂λ, 1) ⇔ cov(ai ,�θi )

σ 2
�θ

> 1;

2. λ ∈ (0, ̂λ) ⇔ cov(ai ,θ̄ )

σ 2
θ̄

> 1
1−r

.

Thus, the responsiveness of the action to each component of the payoff shock is determined 
by the weight λ that the signal assigns relative to complete information benchmark λ̂. For any 
given information structure λ, the responsiveness is stronger than in the complete information 
environment for exactly one of the components, and weaker for the other.

We recall from the analysis in the previous section that with purely aggregate shocks, any 
residual uncertainty about the payoff shock inevitably reduced the responsiveness of the individ-
ual agent to the aggregate shock, and ultimately reduced the aggregate responsiveness. Similarly, 
with idiosyncratic shocks only, the residual uncertainty attenuated the responsiveness to his 
payoff shock θi . By contrast, in the joint presence of idiosyncratic and aggregate shocks, the 
interaction between the idiosyncratic and the aggregate shock can correlate the responsiveness 
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Fig. 1. Responsiveness to fundamentals for ρθθ = 1/2.

of the agents without attenuating the individual response to one of the components, thus leading 
to a greater responsiveness to one component of the shock than could be achieved under com-
plete information. Intuitively, this stems from the fact that part of the responsiveness to one of 
the components is loaded onto the other component.

In Fig. 1 we plot the responsiveness for the case of ρθθ = 0.5 and different interaction pa-
rameters r . The threshold values ̂λr simply corresponds to the critical value ̂λ for each of the 
considered interaction parameters r ∈ {− 3

4 , 0, + 3
4 }. The horizontal black lines represent the re-

sponsiveness to the aggregate shock θ̄ in the complete information equilibrium which is equal 
to 1/(1 − r), and the responsiveness to the idiosyncratic part, which is always equal to 1. By 
contrast, the red curves represent the responsiveness to the aggregate shock along the noise free 
equilibrium, and the blue curves represent the responsiveness to the idiosyncratic shock. Thus if 
λ < λ̂, then the responsiveness to the aggregate shock θ̄ is larger than in the complete information 
equilibrium, and conversely for �θi . Moreover, we observe that the maximum responsiveness to 
the aggregate shock is never attained under either the complete information equilibrium or at the 
boundary values of λ, at 0 or 1. This immediately implies that the responsiveness is not mono-
tonic in the informational content. We now provide some comparative static results with respect 
to the strategic environment represented by r .

Proposition 5 (Informational weight and maximal volatility). For all ρθθ ∈ (0, 1):

1. the informational weights λ that maximize the second moments satisfy:

arg max
λ

{
(1 − ρaa)σ

2
a

}
> arg max

λ

{
σ 2

a

}
> arg max

λ

{
ρaaσ

2
a

};
2. the informational weights λ that maximize the second moments: arg maxλσ

2
a , arg maxλρaaσ

2
a , 

arg maxλ(1 − ρaa)σ
2
a are strictly decreasing in r;

3. the maximal second moments: maxλ σ 2
a , maxλ ρaaσ

2
a , maxλ(1 − ρaa)σ

2
a are strictly increas-

ing in r .
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Thus, the maximal volatility, both individual and aggregate, is increasing in the level of com-
plementarity r . Even the maximal dispersion is increasing in r . In the equilibrium with maximum 
dispersion, the agents confound the idiosyncratic and aggregate component of the payoff shock 
and overreact to the idiosyncratic part, this effect increases with r . This implies that the respon-
siveness to the aggregate shock θ increases, and hence the overreaction to the idiosyncratic shock 
�θi increases as well. Moreover, the optimal weight on the aggregate shock increases in r for all 
of the second moments.

Proposition 6 (Aggregate volatility). The maximal aggregate volatility is given by:

max
λ

{
ρaaσ

2
a

} = σ 4
�θi

4(
√

σ 2
θ̄

+ (1 − r)σ 2
�θi

− σθ̄ )
2

(26)

and is strictly increasing and without bound in the idiosyncratic uncertainty σ 2
�θi

.

Importantly, the maximum aggregate volatility is not bounded anymore by the aggregate 
volatility of the complete information equilibrium. In fact, the aggregate volatility is increas-
ing without bounds in the variance of the idiosyncratic shock even in the absence of variance of 
the aggregate shock θ . These results are in stark contrast to the complete information equilib-
rium in which the aggregate volatility is unaffected by the variance of the idiosyncratic shock. It 
illustrates in a simple way that the aggregate volatility may stem from uncertainty about either
the aggregate or the idiosyncratic fundamental. As in the case of individual decision-making, 
we can consider the limits of the aggregate volatility as we approach a model of aggregate or 
idiosyncratic shocks only.

Corollary 3 (Maximal volatility with aggregate or idiosyncratic shocks only). The maximal 
volatility with only aggregate shocks is limσ 2

�θi
→0 maxλ{var(A)} = σ 2

θ̄
/(1 − r)2 and with only 

idiosyncratic shocks is limσ 2
θ̄
→0 maxλ{var(A)} = σ 2

�θi
/(4(1 − r)).

Confounding information The idea that confounding shocks can lead to overreaction goes back 
at least to Lucas [14]. In a seminal contribution, he shows how monetary shocks can have a real 
effect in the economy, even when under complete information monetary shocks would have no 
real effect. As agents observe just a one-dimensional signal (a price) that confounds two shocks, 
namely the labor market shock and the monetary supply shock, they necessarily respond to the 
two shocks in the same way. By contrast, under complete information they would condition their 
hiring decisions only on the labor market conditions. Yet the one-dimensional signal does not 
allow them to disentangle both shocks and in equilibrium they respond to both shocks. Thus, this 
can be seen as an overreaction to monetary shocks due to “informational frictions”. The idea has 
been present also in more recent papers. For example, Venkateswaran [21] uses a similar idea 
to show how firms can have an excess reaction to aggregate shocks when these are confounded 
with idiosyncratic shocks or Mackowiak and Wiederholt [15] who derive informational frictions 
in a model of rational inattention.

In a recent contribution, Angeletos and La’O [4] consider an economy with purely idiosyn-
cratic payoff shocks that still displays aggregate fluctuations. Each agent is assumed to know the 
realization of his individual payoff shock but only interacts with a specific trading partner rather 
than the aggregate market. Now, even though the payoff uncertainty is purely idiosyncratic, and 
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each agent knows his own payoff shock, the pairwise interaction leaves each agent uncertain 
about the action of his trading partner. It is this uncertainty that can be affected by a common 
noise term, and hence generate aggregate volatility across the agents. They interpret this common 
noise term as sentiments which generate aggregate fluctuations.

The current analysis allow us to extract some very simple intuitions on when informational 
frictions can have a big effect on aggregate outcomes. We saw that as we approach a world of 
idiosyncratic uncertainty (ρθθ → 0), the maximum aggregate volatility is bounded away from 0 
and it is achieved by a noise free equilibria. The information structure amplifies the aggregate 
shock that has small variance and leads to a big response by the agents provided that the infor-
mational weight on the aggregate shock is sufficiently large. Thus, we find that in a model with 
idiosyncratic uncertainty such as Angeletos and La’O [4], any arbitrarily small aggregate shock 
can have a huge effect, that it can be amplified if it receives a sufficiently large weight in the 
signal of the agents.

6. Equilibrium behavior for all information structures

Until now we have analyzed the outcomes under the Bayes Nash equilibrium for a very spe-
cial class of information structures. By contrast, we now describe the equilibrium behavior for 
all (symmetric and normally distributed) information structures. Thus we now allow for noisy
rather than noise free information structures, and we allow for multidimensional rather than one-
dimensional signals. Moreover, the signals, both across dimensions and across agents can have 
arbitrary correlation structures.

6.1. Definition of Bayes correlated equilibrium

In order to describe the equilibrium behavior across all possible information structures, we 
introduce a solution concept, Bayes correlated equilibrium, that describes the behavior (and out-
comes) independent of the specific information structure that the agents may have access to. The 
set of Bayes correlated equilibria has the advantage that it can be completely described by a small 
set of inequalities on the first and second moments of the equilibrium distribution.

Definition 2 (Bayes correlated equilibrium). The variables (θi, θ̄ , ai, A) form a symmetric and 
normally distributed Bayes correlated equilibrium if their joint distribution is given by a multi-
variate normal distribution and for all i and ai :

ai = rE[A|ai] +E[θi |ai]. (27)

The Bayes correlated equilibrium requires that the joint distribution of shocks and actions 
is such that for every action ai in the support of the joint distribution the best response satisfies 
condition (27). We emphasize that the equilibrium notion does not refer to any information struc-
ture or signals. It is intentionally defined without reference to any specific information structure 
in contrast to the notion of Bayes Nash equilibrium that is always defined with reference to a 
specific information structure. The only informational restrictions that are imposed by the above 
equilibrium notion are that: (i) the marginal distribution over the payoff shocks (θi, θ̄ ) coincides 
with common prior, and (ii) each agent conditions on the information contained in joint dis-
tribution, and hence when choosing action ai forms the conditional expectation. The notion of 
Bayes correlated equilibrium was defined earlier in Bergemann and Morris [8]. In the present 
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context, we use it to obtain bounds on the volatility of equilibrium without reference to a specific 
information structure to begin with.

6.2. Characterization of Bayes correlated equilibria

We begin the analysis of the Bayes correlated equilibrium by reducing the dimensionality of 
the variance-covariance matrix. We appeal to the symmetry condition to express the aggregate 
variance in terms of the individual variance and the correlation between individual terms. Just as 
we described the variance σ 2

θ
of the aggregate shock θ in terms of the covariance between any 

two individual payoff shocks, or σ 2
θ

= ρθθσ
2
θ , we can describe the variance of aggregate action 

σ 2
A in terms of the covariance of any two individual actions, or σ 2

A = ρaaσ
2
a . In the discussion 

following Proposition 2, we introduced the correlation coefficient between action ai and payoff 
shock θi of player i by ρaθ :

cov(ai, θi) � ρaθσaσθ ,

and the correlation coefficient between the action ai of agent i and the payoff shock θj of a 
different agent j by ρaφ :

cov(ai, θj )� ρaφσaσθ .

These three correlation coefficients, (ρaa, ρaθ , ρaφ), parameterize the entire variance-covariance 
matrix, denoted by V, of the joint distribution of (θi, θ̄ , ai, A). Now, the covariance between a 
purely idiosyncratic random variable and an aggregate random variable is always 0. This implies 
that both the covariance between the aggregate action A and the payoff shock θj of player j and 
the covariance between the agent i’s action, ai , and the aggregate shock to the payoff shock, θ , 
are the same as the covariance between the action of player i and the payoff shock θj of player j , 
or ρaφσaσθ . Thus we can reduce the number of variance terms, and in particular the number of 
correlation coefficients needed to describe the variance-covariance matrix V without any loss of 
generality.

Lemma 1 (Symmetric Bayes correlated equilibrium). The variables (θi, θ̄ , ai, A) form a symmet-
ric and normally distributed Bayes correlated equilibrium if and only if there exist parameters of 
the first and second moments, (μa, σa, ρaa, ρaθ , ρaφ), such that the joint distribution is given by:⎛⎜⎝

θi

θ̄

ai

A

⎞⎟⎠ ∼N

⎛⎜⎜⎝
⎛⎜⎝

μθ

μθ

μa

μa

⎞⎟⎠ ,

⎛⎜⎜⎝
σ 2

θ ρθθσ
2
θ ρaθσaσθ ρaφσaσθ

ρθθσ
2
θ ρθθσ

2
θ ρaφσaσθ ρaφσaσθ

ρaθσaσθ ρaφσaσθ σ 2
a ρaaσ

2
a

ρaφσaσθ ρaφσaσθ ρaaσ
2
a ρaaσ

2
a

⎞⎟⎟⎠
⎞⎟⎟⎠ , (28)

and for all i and ai :

ai = rE[A|ai] +E[θi |ai]. (29)

We can now find restrictions on the first and second moments of ai using the best response 
condition (29). By taking expectations of (29) and using the law of iterated expectations, we get:

μa = rμa + μθ ⇔ μa = μθ

1 − r
. (30)
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If we multiply (29) by ai and take expectations we get:

E
[
a2
i

] = rE[aiA] +E[aiθi].
Using (30) we obtain a similar condition for the variance of ai :

σ 2
a = r cov(ai,A) + cov(ai, θi) ⇔ σa = ρaθσθ

1 − rρaa

. (31)

We thus have a complete determination of the individual mean and variance. Note that these 
conditions do not depend at all on the joint normality of (ai, A, θi, θ̄ ) as they only used the 
law of iterated expectations. Moreover, it is easy to see how one could get similar additional 
restrictions for the higher moments of ai which would be relevant for the non-normal case. Now, 
for V to be a valid variance-covariance matrix, it has to be positive semidefinite, and this imposes 
restrictions on the remaining covariance terms.

Proposition 7 (Characterization). A multivariate normal distribution of (θi, θ̄ , ai, A) is a sym-
metric Bayes correlated equilibrium if and only if:

1. the mean of the individual action is:

μa = μθ/(1 − r); (32)

2. the standard deviation of the individual action is:

σa = ρaθσθ

1 − rρaa

≥ 0; (33)

3. the correlation coefficients ρaa, ρaθ , ρaφ satisfy ρaa, ρaθ ≥ 0 and the inequalities:

(i) (ρaφ)2 ≤ ρθθρaa, (ii) (1 − ρaa)(1 − ρθθ ) ≥ (ρaθ − ρaφ)2. (34)

We thus identified necessary and sufficient conditions for the random variables (θi, θ̄ , ai, A)

to form a Bayes correlated equilibrium. These conditions can be separated into two distinct sets 
of requirements: the first set of conditions follow directly from the best response condition (27)
and merely rely on the linearity of the best response; the second set of conditions are purely 
statistical conditions that require that the variance-covariance matrix V of the joint multivariate 
distribution constitutes a valid variance-covariance matrix, namely that it is positive semidefi-
nite.

Importantly, both sets of conditions are necessary independent of the assumption of normally 
distributed payoff uncertainty. The normality assumption simply ensures that the equilibrium 
distributions are completely determined by the first and second moments. Thus, the normality 
assumptions allows us to describe the set of Bayes correlated equilibria in terms of restrictions 
that are necessary and sufficient. Nevertheless, for any arbitrary distribution of payoff shocks and 
equilibrium actions, the aggregate volatility provided in Proposition 6 will remain a valid bound 
on aggregate volatility.

There are two aspects of Proposition 7 that we should highlight. First, the mean μa of the in-
dividual action (and a fortiori the mean of the aggregate action A) is completely pinned down by 
the aggregate payoff shock. This implies that any differences across Bayes correlated equilibria 
must manifest themselves in the second moments only. Second, the restrictions on the equilib-
rium correlation coefficients do not at all depend on the interaction parameter r . The restrictions 
on the set of equilibrium correlations are purely statistical and stem from the condition that the 
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variance-covariance matrix V forms a positive semidefinite matrix. By contrast, the mean μa and 
the variance σ 2

a of the individual actions do depend on the interaction parameter r , as they are 
determined by the best response condition (29).

We will show in Section 7 that the disentanglement of the set of feasible correlations 
and the interaction parameter is possible only if we allow for all possible information struc-
tures, i.e. when we do not impose any restrictions on the private information that agents may 
have.

In the special case of pure idiosyncratic or pure aggregate shocks the set of outcomes in terms 
of the correlation coefficients (ρaa, ρaθ , ρaφ) reduces to a two-dimensional set. The reduction 
in dimensionality arises as the correlation coefficient ρaφ of action ai and the payoff shock θj

is either zero (in the absence of aggregate shocks) or equal ρaθ (in the absence of idiosyncratic 
shocks), and thus redundant in either case. In the case of pure aggregate shocks, ρθθ = 1, the 
conditions in (34) reduce to ρaφ = ρaθ , and ρ2

aθ ≤ ρaa as established earlier in Bergemann and 
Morris [8].

6.3. Equivalence between Bayes Nash and Bayes correlated equilibrium

Next we describe the relationship between the joint distributions of (θi, θ̄ , ai, A) that can 
arise as Bayes correlated equilibria and the distributions that can arise as Bayes Nash equilibria 
for some information structure I = {Si}i∈[0,1]. In contrast to the restriction to one-dimensional 
noise free information structure made in Section 3, we now allow for a much larger class of 
information structures, including noisy and multidimensional information structures. In fact, for 
the present purpose, it is sufficient to merely require that the associated symmetric equilibrium 
strategy {ai}i∈[0,1]: ai : Si →R forms a multivariate normal distribution.

Proposition 8 (Equivalence). The variables (θi, θ̄ , ai, A) form a (normal) Bayes correlated 
equilibrium if and only if there exists some information structure I under which the variables 
(θi, θ̄ , ai, A) form a Bayes Nash equilibrium.

The important insight of the equivalence is that the set of outcomes that can be achieved as a 
Bayes Nash equilibrium for some information structure can equivalently be described as a Bayes 
correlated equilibrium. Thus, the solution concept of Bayes correlated equilibrium allows us to 
study the set of outcomes that can be achieved as a Bayes Nash equilibrium, importantly without 
the need to specify a specific information structure. In Bergemann and Morris [9], we establish 
the equivalence between Bayes correlated equilibrium and Bayes Nash equilibrium for canonical 
finite games and arbitrary information structures (see Theorem 1 there). The above proposition 
specializes the proof to an environment with linear best responses and symmetrically normally 
distributed payoff shocks and actions.

We will discuss specific information structures and their associated equilibrium behavior in 
Section 7. Here, we describe a one-dimensional class of signals that is already sufficiently rich 
to “decentralize” the entire set of Bayes correlated equilibria as Bayes Nash equilibria. For this, 
we enlarge the set of noise free structures studied in Section 3 by allowing the weights on �θi

and θ̄ to have different signs, and adding noise:

si = λ�θi + (
1 − |λ|)θ̄ + εi, (35)
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where λ ∈ [−1, 1] and εi is normally distributed with mean zero and variance σ 2
ε .3 Similarly 

to the definition of the payoff shocks, the individual error term εi can have a common and an 
idiosyncratic component, respectively:

ε̄ � Ei[εi], �εi � εi − ε̄.

Thus, the joint distribution of the shocks and signals is given by:⎛⎜⎝
�θi

θ̄

�εi

ε̄

⎞⎟⎠ ∼N

⎛⎜⎜⎝
⎛⎜⎝

0
μθ

0
0

⎞⎟⎠ ,

⎛⎜⎜⎝
(1 − ρθθ )σ

2
θ 0 0 0

0 ρθθσ
2
θ 0 0

0 0 (1 − ρεε)σ
2
ε 0

0 0 0 ρεεσ
2
ε

⎞⎟⎟⎠
⎞⎟⎟⎠ , (36)

and the standard deviation σε > 0 and the correlation coefficient ρεε ∈ [0, 1] are the parame-
ters of the fully specified information structure I = {Ii}i∈[0,1], together with the confounding 
parameter λ. We observe that the dimensionality of information structure I , given by (35) and 
(36), and thus parametrized by (λ, σε, ρεε), matches the dimensionality of the Bayes correlated 
equilibrium expressed in terms of the correlation coefficients (ρaa, ρaθ , ρaφ).

Proposition 9 (Informational decentralization). The variables (θi, θ̄ , ai, A) form a (normal) 
Bayes correlated equilibrium if and only if there exist some information structure (λ, σ 2

ε , ρεε)

under which the variables (θi, θ̄ , ai, A) form a Bayes Nash equilibrium.

The class of one-dimensional signals described by (35) is thus rich enough to “informationally 
decentralize” in the sense that every Bayes correlated equilibrium distribution can be reproduced 
as a Bayes Nash equilibrium distribution for some choice of the parameters (λ, σε, ρεε) that 
describe the family of information structures given by (35). This illustrates how the equilibrium 
conditions of the Bayes correlated equilibrium, in particular the conditioning in the best response 
(27) encode in the joint distribution information that is made explicit by the information structure 
of the corresponding Bayes Nash equilibrium.

6.4. The boundary of Bayes correlated equilibria

We characterized the entire set of Bayes correlated equilibria in Proposition 7. The mean and 
the variance of the individual action were determined by the equalities (32) and (33) and the 
correlation coefficients (ρaa, ρaθ , ρaφ) were restricted by the two inequalities given by (34). We 
now provide a characterization of the boundary of the set of Bayes correlated equilibria in terms 
of the two inequalities which only involve the correlation coefficients (ρaa, ρaθ , ρaφ).

Definition 3 (Boundary of Bayes correlated equilibrium). The correlation coefficients (ρaa, ρaθ ,

ρaφ) are on the (upper) boundary of the Bayes correlated equilibrium set if they satisfy (34) and 
there is no other triple of coefficients (ρaa, ρ′

aθ , ρ
′
aφ), also satisfying (34), such that:(

ρ′
aθ , ρ

′
aφ

) ≥ (ρaθ , ρaφ), and
(
ρ′

aθ , ρ
′
aφ

) �= (ρaθ , ρaφ).

3 The weight λ on the idiosyncratic shock is now allowed to take on negative values, and thus the weights on the 
idiosyncratic and the aggregate shock can have different signs. By expanding the class of information structures relative 
to those considered in Section 3, we expand the set of feasible information structures. This permits for equilibrium 
correlation structures in which either ρaθ < ραφ or ρaφ < 0.
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Fig. 2. The boundary of the Bayes correlated equilibrium set

We refer to any triple (ρaa, ρaθ , ρaφ) that satisfies the conditions of Definition 3 as an element 
of the upper boundary. For any attainable correlation between actions, ρaa, there is no other 
Bayes correlated equilibrium (ρaa, ρ′

aθ , ρ
′
aφ) that achieves a weakly higher correlation with the 

idiosyncratic shock �θi and the aggregate shock θ , and strictly higher for at least one of the two 
shocks.

Now, necessary conditions for a triple (ρaa, ρaθ , ρaφ) to be on the boundary of the Bayes cor-
related equilibrium set is that both inequalities (34) are satisfied as equalities, and the restriction 
to the positive root of the quadratic equations yields the sufficient condition.

Proposition 10 (Boundary of Bayes correlated equilibria). The correlation coefficients (ρaa, ρaθ ,

ρaφ) form the boundary of the Bayes correlated equilibrium if and only if{
(ρaa, ρaθ , ρaφ) ∈ [0,1]3 : ρaθ = √

ρaaρθθ +√
(1 − ρθθ )(1 − ρaa), ρaφ = √

ρaaρθθ

}
.

(37)

The boundary of the Bayes correlated equilibria is described by equation (37) which iden-
tifies ρaθ and ρaφ as a function of ρaa for a given composition of idiosyncratic and aggregate 
shocks, ρθθ . Accordingly, the correlation coefficient ρaθ between action ai and shock θi of agent 
i is the sum of two roots. The roots arise from the aggregate and the idiosyncratic shock in the 
agents’ actions and the agents’ shocks, ρaaρθθ and (1 − ρaa)(1 − ρθθ ), respectively. The set 
of attainable correlations is restricted by the composition of the payoff shocks as (37) depends 
explicitly on ρθθ . Fig. 2 visualizes the boundary of the equilibrium set in the two-dimensional 
space of correlation coefficients (ρaa, ρaθ ) for different compositions of the shocks, ρθθ . The 
left panel represents the case of ρθθ = 1/2, whereas the right panel represents ρθθ = 1/4 and 
ρθθ = 3/4. The right panel illustrates how the composition of the payoff shocks, ρθθ , impacts 
the relationship between ρaa and ρaθ relative to the symmetric condition with ρθθ = 1/2.

We can decompose the action of each agent in terms of his responsiveness to the idiosyncratic 
shock �θi and the aggregate shock θ̄ , and any residual responsiveness has to be attributed to 
noise, see (25). The action ai itself also has an idiosyncratic and an aggregate component as 
ai = A + �ai . The conditional variance of these components of ai can be expressed in terms of 
the correlation coefficients (ρaa, ρaθ , ρaφ, ρθθ ), which are subject to the restrictions of Proposi-
tion 7. By using the familiar property of the multivariate normal distribution for the conditional 
variance, we obtain a diagonal matrix:

var

[
�ai

A

∣∣∣∣ �θi

θ̄

]
= σ 2

a

(
(1 − ρaa) − (ρaθ−ρaφ)2

1−ρθθ
0

ρ2
aφ

)
. (38)
0 ρaa −
ρθθ
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If the components A and �ai of the agent’s individual action are completely explained by the 
components of the individual payoff shock, θ̄ and �θi , then the conditional variance of the action 
components, and a fortiori of the action itself, is equal to zero.4 In fact, the above conditional 
variances are equal to zero if the inequalities of Proposition 7 are satisfied as equalities.5

This restatement of the conditions for the boundary of the Bayes correlated equilibrium in 
terms of zero conditional variance provides a hint as to which information structures might attain 
the above boundary of the Bayes correlated equilibrium set as a Bayes Nash equilibrium. After 
all, the condition of zero conditional variance says that the action of each agent is completely 
explained by variations in the idiosyncratic and aggregate shock. But precisely this property was 
guaranteed by the noise free information structures that we considered in Section 3. Indeed, we 
can now provide an equivalence result akin to Proposition 8, but this time specialized to the 
boundary of the Bayes correlated equilibrium set.

Proposition 11 (Equivalence). The coefficients (ρaa, ρaθ , ρaφ) form a boundary Bayes corre-
lated equilibrium if and only if they form a noise free Bayes Nash equilibrium for some informa-
tion structure λ.

The early restriction to noise free information structure in Section 3 may have appeared ad 
hoc. Proposition 11 establishes that the noise free information structures are economically sig-
nificant in that they attain the maximally achievable equilibrium correlations among all possible 
information structures. Thus, the boundary of the Bayes correlated equilibria can be informa-
tionally decentralized by signals of the form (35) after imposing the requirement that σε = 0 and
λ ∈ [0, 1], and hence precisely the one-dimensional noise free information structures investigated 
in Section 3.

A crucial implication of the characterization of the boundary in terms of the correlation co-
efficients is that if we seek to identify the equilibrium distribution that maximizes volatility or 
dispersion in the economy, then it is without loss of generality to focus on the boundary of the 
Bayes correlated equilibrium set. Moreover, by Proposition 11, this means that we can restrict 
attention to the class of one-dimensional noise free information structure.

Proposition 12 (Maximal volatility and dispersion). Among all Bayes correlated equilibria, in-
dividual volatility, aggregate volatility, and dispersion are all maximized by a boundary Bayes 
correlated equilibrium.

More generally, the construction of the boundary suggests that any monotone function of the 
correlation coefficients (ρaa, ρaθ , ρaφ) should achieve its maximum across all possible Bayes 
correlated equilibria somewhere on the boundary. This indicates that the noise free informa-
tion structures remain the critical ones if we were to conduct a more comprehensive welfare 
analysis beyond the analysis of the second moments here. Notably, an auxiliary result for 
Proposition 12, Lemma 2 in Appendix A, establishes that any continuous function, ψ , with 

4 The matrix of conditional variances, (38), is well-defined only in the joint presence of idiosyncratic and aggregate 
shocks, that is for ρθθ ∈ (0, 1). For the case of pure idiosyncratic or pure aggregate shocks, ρθθ = 0 or ρθθ = 1, one of 
the conditioning terms, θ̄ or �θi , has zero variance by definition.

5 The negative root of the equality version of (34) also leads to the zero conditional variance. The resulting correlation 
coefficients could be generated by noise free information structures with λ < 0. But the correlation coefficients are never 
part of the upper boundary of the Bayes correlated equilibrium set as Footnote 3 indicates.
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(ρaa, ρaθ , ρaφ) �→ ψ(ρaa, ρaθ , ρaφ), that is strictly increasing in ρaθ and weakly increasing in 
ρaφ , achieves its maximum in the set of all feasible Bayes correlated equilibria on the boundary 
of the set. As the conditions of Lemma 2 are silent about the correlation coefficient ρaa , we can 
accommodate strategic environments (and payoffs and associated objective functions) with ei-
ther strategic substitutes or complements. Thus, we conclude that the special class of noise free 
information structures are indeed the relevant information structures even if we were to analyze 
a larger class of welfare functions.

In the discussion following Proposition 7, we argued that the moment restrictions remain nec-
essary conditions even in the absence of any distributional assumptions of normality. Therefore, 
we can actually state a stronger version of Proposition 12. Suppose we maintain the assumption 
of normality in the payoff shocks, but neither do we require the normality in actions nor the joint 
normality in actions and shocks. Then, we would still have the result that the volatility is max-
imized by the noise free and normally distributed equilibria of Proposition 12, as the necessary 
boundary conditions of the Bayes correlated equilibria given by Proposition 7 are indeed attained 
by linear combinations of the idiosyncratic and the aggregate shocks.6

7. Information structures and equilibrium behavior

We began our analysis with a class of specific information structures (noise free) and then 
established that these noise free information structures indeed form the boundary of equilibrium 
behavior with respect to all (symmetric normal) information structures. It is usual to assume some 
particular, but not noise free, information structure. We now ask how restrictive these commonly 
used classes of information structures are with respect to the entire set of feasible equilibrium 
behavior. Our purpose here is only to illustrate how assumptions about the information structure 
can be restrictive, rather than providing a comprehensive account of all information structure that 
appeared in the literature. Our representative examples illustrate subtle implications of restric-
tions on the information structure. The specific information structures that we study are a subset 
of the following three-dimensional information structures:

Si �
{
s1
i = θi + ε1

i , s
2
i = θ̄ + ε2

i , s
3
i = θ̄ + ε̄3}, (39)

where ε1
i , ε2

i are idiosyncratic noise terms and ε̄3 is a common noise term, all normally dis-
tributed, independent and with zero mean. This class of information structures appears in the 
analysis of Angeletos and Pavan [6] and is parameterized by three variables, namely the variances 
(σ 2

ε1 , σ
2
ε2, σ

2
ε3) of the noise terms. We begin by characterizing the set of feasible correlations when 

agents only observe a noisy idiosyncratic signal of their payoff shock θi:7

s1
i = θi + ε1

i ,

and thus we set σ 2
ε2 = σ 2

ε3 = ∞. This class of signals is frequently used in the literature on 
information sharing, see Vives [23] and Raith [18].

6 We conjecture that Proposition 12 holds even more generally in environments without normally distributed payoff 
shocks. But in the absence of normally distributed payoff shocks, the associated noise free information structure is likely 
to be a nonlinear, rather than linear, function of the shocks.

7 We emphasize the fact that conditions (32) and (33) must hold for any signal structure. Thus, by characterizing the 
set of feasible correlations, we are characterizing the set of feasible outcomes.
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Fig. 3. Feasible BNE correlation coefficients with noisy signals about payoff state θi .

Proposition 13 (Noisy signal of payoff state). A set of correlations (ρaa, ρaθ , ρaφ) can be 
achieved as a Bayes Nash equilibrium with an information structure {s1

i }i∈[0,1], if and only if:

ρaθ =
√

ρaa

ρθθ

; ρaφ = ρaθρθθ ; ρaa ∈ [0, ρθθ ]. (40)

We observe that the set of feasible correlations when the agents receive only a one-
dimensional signal of the form s1

i does not depend on the interaction parameter r . In Fig. 3 we 
illustrate the locus of attainable correlations with information structures {s1

i }i∈[0,1] for ρθθ = 1/2. 
The arrows point in the direction of greater precision (i.e., lower variance) of the error term. 
Notably, all the attainable equilibrium coefficients are below the frontier given by the Bayes 
correlated equilibria, except for a single point that is identified by zero noise, or σ 2

ε1 = 0.
Next, we consider information structures in which each agent knows his own payoff shock, 

and thus we set σ 2
ε1 = 0, but allow σ 2

ε2, σ
2
ε3 ∈ [0, ∞). That is, all possible outcomes that are 

consistent with each agent knowing at least θi . Since each agent knows his own payoff shock, 
the residual uncertainty is with respect to the actions taken by the other players. The informa-
tional assumption that each agent knows his own payoff shock θi commonly appears in the 
macroeconomics literature. For example, Angeletos and La’O [2,3] and Angeletos, Iovino, and 
La’O [1] consider models with idiosyncratic and aggregate shocks and imperfect information, 
but assume that each agent knows his own payoff shock θi . In a model with idiosyncratic rather 
than aggregate interaction, Angeletos and La’O [4] analyze the impact of informational friction 
on aggregate fluctuations. Again, they assume that each agent knows his own payoff shock θi , 
but is uncertain about the payoff shock θj of the trading partner j . Similarly, Lorenzoni [13]
investigates the optimal monetary policy with dispersed information. He also considers a form of 
individual matching rather than aggregate interaction. The informational assumption common to 
all of these models is that every agent i knows his own payoff shock θi , and thus all uncertainty 
is purely strategic.

The characterization of the set of attainable equilibrium correlations is achieved in two steps. 
First, we describe the set of feasible action correlations ρaa . If each agent only knows his own 
payoff shock θi , then the correlation ρaa is equal to ρθθ as the actions of any two agents can only 
be correlated to the extent that their payoff shocks are correlated. By contrast, if the agents have 
complete information, then the correlation is given by ρaa = ρ̂aa ,

ρ̂aa �
ρθθ

(1 − ρθθ )(1 − r)2 + ρθθ

, (41)

where ρ̂aa is the correlation that is achieved by the information structure λ̂ that recovers the 
equilibrium moments of the complete information Nash equilibrium, see (24).
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Fig. 4. Boundary of the set of feasible correlations when agents know own payoff (ρθθ = 1/2).

We find that the set of feasible action correlations is always between these two quantities, ρθθ

and ρ̂aa , providing the lower and upper bound. If r > 0, then the complete information bound 
is the upper bound, if r < 0, it is the lower bound. For r = 0 they coincide as θi is a sufficient 
statistic of the action taken by each agent under complete information.

Second, we describe the set of feasible correlations between action and individual payoff 
shock, ρaθ , for any feasible ρaa . The set of feasible ρaθ is determined by two functions of ρaa , 
which provide the lower and upper bound for the feasible ρaθ . We denote these functions by 
ρi

aθ (ρaa) and ρc
aθ (ρaa) as these bounds are achieved by information structures in which each 

agent knows his own payoff shock and receives a second signal, either an idiosyncratic signal of 
the aggregate shock θ̄ : s2

i � θ̄ + ε2
i or a common signal of θ̄ : s3

i � θ̄ + ε̄3.

Proposition 14 (Known payoff state θi ). A set of correlations (ρaa, ρaθ ) can be induced by a 
linear Bayes Nash equilibrium in which each agent knows his payoff shock θi if and only if

ρaa ∈ [
min{ρ̂aa, ρθθ },max{ρ̂aa, ρθθ }

]; (42)

and for any ρaa satisfying (42):

ρaθ ∈ [
min

{
ρc

aθ (ρaa), ρi
aθ (ρaa)

}
,max

{
ρc

aθ (ρaa), ρi
aθ (ρaa)

}]
.

In Fig. 4, we illustrate the Bayes Nash equilibrium set for different values of r for a given 
correlation ρθθ = 1/2. Each interaction value r is represented by a differently colored pair of 
lower and upper bounds. For each value of r , the entire set of Bayes Nash equilibria is given by 
the area enclosed by the lower and upper bounds. Notably, the bounds ρc

aθ (ρaa) and ρi
aθ (ρaa)

intersect in two points, corresponding to each agent knowing his payoff shock θi only (at ρaa =
ρθθ = 1/2) and to complete information, at the low or high end of ρaa depending on the nature 
of the interaction, respectively. In fact these, and only these, two points, are also boundary points 
of the unrestricted set of Bayes correlated equilibria. When r ≥ 0, the upper bound is given by 
a signal with an idiosyncratic error term, s2

i , while the lower bound is given by a signal with a 
common error term, s3

i , and conversely for r ≤ 0.
Thus, if each agent knows at least his own payoff shock, then we observe a dramatic reduction 

in the set of feasible Bayes Nash equilibria. Notably, every element, with the exception of the 
information structures mentioned in the above paragraph, are in the interior of the unrestricted 
set of Bayes correlated equilibria. Moreover, the nature of the interaction has a profound impact 
on the set of correlations (ρaa, ρaθ ) that can arise in equilibrium, both in terms of its size as well 
as its location in the unit square.

If each agent i is assumed to know his payoff shock θi , then we can restate the best response 
condition (4) with respect to ai after the following change of variables in terms of deviations 
from the payoff shock:
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ãi � ai − θi, Ã� A − θ. (43)

The best response condition (4) in terms of ai reduces to the following best response condition 
in terms of ãi :

ãi = rE
[
θ |θi,Ii

]+ rE
[
Ã|θi,Ii

]
, (44)

where Ii is any information agent i gets beyond knowing θi . The resulting best response condi-
tion is now isomorphic to one where there are only aggregate shocks, and where the payoff shock 
and average action receive the same weight in the best response condition of the individual agent. 
This provides a distinct intuition on the strong restrictions on behavior that arise from imposing 
that agents know their own payoff shock as stated in Proposition 14.

In the supplemental online material, we analyze a third subset of information structure, in 
which, besides the noisy signal {s1

i }i∈[0,1], each player also knows the aggregate shock θ , thus 
σ 2

ε2 = σ 2
ε3 = 0. Although a priori this may not seem like an information structure that would arise 

exogenously, it is the information structure that arises when agents receive endogenous informa-
tion on the average action taken by other players, such as in a rational expectations equilibrium 
with a continuum of sellers as studied by Vives [25] or Bergemann, Heumann, and Morris [7]. 
In the supplemental online material, we characterize the entire set of equilibrium correlations 
that can be achieved with the three-dimensional structures defined by (39). Surprisingly then the 
above class of three-dimensional information structures Si fails to decentralize the entire set of 
Bayes correlated equilibria. By contrast, in the case of pure aggregate shocks Bergemann and 
Morris [8] show that any Bayes correlated equilibrium can be decentralized by considering a 
private and a public signal of the payoff shock, namely s1

i = θi + ε1
i and s3

i = θ̄ + ε̄3.

8. Discussion

We conclude by discussing the relevance of the current analysis to environments with hetero-
geneous rather than aggregate interaction. We end by relating our analysis to the large literature 
on information sharing among firms and suggest how the current tools might yield new results 
there as well.

Beyond aggregate interaction We deliberately restricted our analysis to an environment with 
aggregate interaction. Every agent formed a best response against the average of the population. 
Yet, within the linear quadratic framework, it appears feasible to extend the analysis to much 
richer interaction structures, such as pairwise interaction or even general network interaction 
structures. In the macroeconomics literature, models of heterogenous interactions have appeared 
prominently, for example, in Lorenzoni [13] and Angeletos and La’O [4]. Notably, these models 
of pairwise interaction assume that each agent knows his own payoff shock θi but is still uncer-
tain about the payoff shocks of other agents. As each agent i knows his own payoff shock θi , 
there is no payoff uncertainty anymore and so the residual uncertainty is all about the strategic 
uncertainty, namely the action of the other agent.8

Interestingly, even if we were interested in strategic uncertainty in the absence of payoff 
uncertainty, the noise free information structures remain of central importance for the aggre-
gate behavior. To see this, consider a simple model of pairwise interaction as in Angeletos and 

8 We thank our discussant, Marios Angeletos, for emphasizing the importance of the distinct contribution of each 
source of uncertainty to the aggregate volatility.
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La’O [4]. We assume there is pairwise matching between i and j and that agents interact with 
their partner, ra , as well as with the aggregate population, rA. Thus, the first order condition of 
agent i’s problem when he is matched with j is given by:

ai = E
[
θi |θi,Ii

]+ raE
[
aj |θi,Ii

]+ rAE
[
A|θi,Ii

]
.

If we make the same change of variables as earlier in (43), so that we express the choice variables 
in terms of their deviation from the payoff shock: ãi � ai − θi , Ã � A − θ , then the associated 
first order conditions are given by:

ãi = raE
[
�θj |θi,Ii

]+ rAE
[
θ |θi,Ii

]+ raE
[̃
aj |θi,Ii

]+ rAE
[
Ã|θi,Ii

]
. (45)

Thus, we have a similar model as the one we have been studying so far, but with some differ-
ences. First, agents have some prior information on θ̄ which comes from knowing θi . Second, the 
size of the shocks �θj and θ̄ are scaled by ra and rA, respectively, in the first order conditions. 
Besides these differences, a model with heterogeneous interaction in which each agent knows 
his own payoff shock is almost identical to our original model. Namely, each agent’s uncertainty 
is still two-dimensional, with an aggregate and an idiosyncratic shock (equal to θ̄ and �θj re-
spectively). Thus, we see that even if we were interested in strategic uncertainty in the absence 
of fundamental uncertainty, the same basic intuitions and ideas would still apply. A key factor 
to consider would be to see how the signal leads each agent to be confuses about �θj and θ̄ . 
And as before, the confounding of the information would lead to overreaction and underreaction 
to some of these fundamentals, respectively. Thus, the pairwise interaction, or any other richer 
interaction structure, enriches the set of feasible outcomes and partially reverses the restrictions 
that come with the informational assumptions of knowing the individual payoff states that we 
earlier established in Proposition 14.

Information sharing We described the impact that the private information structure has on the 
second moments of the economy, in particular the volatility of the aggregate outcome. Natu-
rally, we could expand the analysis to functions of the (second) moments of the economy. In the 
large literature on information sharing among firms, pioneered in work by Novshek and Sonnen-
schein [17], Clarke [10] and Vives [22], the expected profit function of the individual firm is a 
function of the volatility both of the individual and the aggregate outcome. In this class of models 
which is presented in a very general framework by Raith [18] and surveyed by Vives [24], each 
firm receives a private signal about a source of uncertainty, say a demand or cost shock. The 
central question is under which conditions the firms have an incentive to commit ex-ante to an 
agreement to share information in some form. The present analysis of the impact of information 
structures on the set of feasible correlations suggests novel insights into the nature of optimal 
information sharing policies.

We briefly illustrate this within a competitive equilibrium with a continuum of producers, each 
one of them with a quadratic cost of production c(ai) = a2

i /2, and facing a linear inverse demand 
function dependent on the aggregate demand shock θ and the aggregate supply A: p(θ, A) =
θ + rA, so that the resulting best response function is again given by (4).9 We can depict the 
iso-profit curve π defined implicitly by a constant expected profit π of the representative firm, 

9 The restriction to the pure aggregate shock environment, θi = θ , allows us to directly use arguments in Bergemann 
and Morris [8], in particular Proposition 8, but the insights naturally extend to the environment with idiosyncratic and
aggregate shocks.
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Fig. 5. Information sharing under public and private disclosure rules

π � E[aip − 1
2a2

i ], in the space of the correlation coefficients (ρaa, ρaθ ). The iso-profit curve π
can be shown to be linear in ρaa , as indicated by the red dashed line in Fig. 5, and the slope is 
determined by the responsiveness r of the price to supply.

The maximal correlation ρaθ that is achievable with disclosure of a common signal, de-
noted earlier in Proposition 14 by ρc

aθ (ρaa), is convex in ρaa , whereas the maximal correla-
tion achievable with disclosure of an idiosyncratic signal is given by ρi

aθ(ρaa) �
√

ρaa , and 
is concave in ρaa . In fact with aggregate shocks only, the idiosyncratic signals s1

i = θ + εi

trace out the entire boundary of the Bayes correlated equilibrium coefficients, as illustrated 
in Fig. 5. We therefore can conclude that the optimal disclosure policy with a public signal
is either zero or complete disclosure, which was a central finding in Kirby [12], Vives [23]
and Raith [18].10 By contrast, the optimal disclosure policy of a private signal depends on r
and can be noisy. The iso-profit curve generates a linear trade-off in the correlations of the 
individual supply decision ai and the demand shock θ . A better match with the level of ag-
gregate demand increases profit, but a better match with the supply of the other firms decreases 
the profit. With public disclosure of a noisy signal si , the convexity in the trade-off leads to 
either zero disclosure or complete disclosure of the aggregate information. With private dis-
closure, the trade-off is resolved in favor of a better match with the demand shock without an 
undue increase in the correlation of the supply decisions. Thus, we find that the industry-wide 
preferred disclosure policy frequently involves partial disclosure of information, by which dis-
closure is noisy and idiosyncratic, as opposed to the bang-bang solution that was previously 
obtained in the literature under the (implicit) restriction to public disclosure policies. Thus we 
find that a common and hence perfectly correlated disclosure policy is (always) weakly and 
(sometimes) strictly dominated by a private and hence imperfectly correlated disclosure pol-
icy.

We can rephrase this insight in terms of the macroeconomic language. An idiosyncratic “sen-
timent” shock may be needed to generate the largest individual volatility in the aggregate shock 
environment, just as a common “sentiment” shocks is necessary to generate the largest volatility 
in the idiosyncratic shock environment of Angeletos and La’O [4]. The analysis in Section 7 sug-
gests that the above results for the pure aggregate shock environment (and similarly for the pure 
idiosyncratic shock) extend to the general environment with idiosyncratic as well as aggregate 
shocks. We leave a more comprehensive analysis for future research.

10 In Section 8.4 of Vives [24], the design of the optimal information sharing policy in a large market with a continuum 
of agents is posed as the problem of a mediator who elicits and then transmits the collected information to the agents. The 
analysis is thus close to the present perspective of the Bayes correlated equilibrium, but also restricts the transmission 
policy to public signals, and hence leads to the same conclusion as the above mentioned literature.
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Appendix A

Appendix A collects the omitted proofs from the main body of the text. The supplementary 
online material contains the Appendices B and C, which have additional results regarding the 
restrictions that information structures impose on the equilibrium behavior, complementing the 
results of Section 7 of the main paper.

Proof of Proposition 1. Since the actions of players must be measurable with respect to si , in 
any linear strategy the actions of players must be given by ai = w(λ)si + ν, where ν and w(λ)

are constants. Thus A = w(λ)((1 − λ)θ̄) + ν. Thus, we must have that:

ai = w(λ)si + ν = E
[
r
(
w(λ)

(
(1 − λ)θ̄

)+ ν
)+ θi |si

]
.

By taking expectations and using the law of iterated expectations, we get:

w(λ)(1 − λ)μθ + ν = rw(λ)
(
(1 − λ)μθ + ν

)+ μθ .

Using that μθ = 0, we get that ν = 0. Thus, we know that ai = w(λ)((1 − λ)θ̄ + λ�θi) and 
A = w(λ)(1 − λ)θ̄ . Multiplying by ai we get: a2

i = E[rAai + θiai |si], and appealing to the law 
of iterated expectations we get:

w(λ)
(
(1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ )

) = (
(1 − λ)ρθθ + λ(1 − ρθθ )

)
,

and solving for w(λ) yields the expression in (11). The uniqueness of the Bayes Nash equilibrium 
is established in Ui and Yoshizawa [19]. �
Proof of Proposition 2. By using the law of iterated expectations we obtain μa = μA =
μθ/(1 − r). We can compute the variance and covariances by using (10) and (11). It is easy 
to see that:

var(ai) = σ 2
a = w(λ)2 var(si) = w(λ)2((1 − λ)2ρθθ + λ2(1 − ρθθ )

)
σ 2

θ ,

thus we get (12). Similarly, we obtain:

var(A) = cov(ai, aj ) = ρaaσ
2
a = w(λ)2

E
[(

(1 − λ)θ̄ + λ�θi

)(
(1 − λ)θ̄ + λ�θj

)]
= w(λ)2(1 − λ)2ρθθσ

2
θ ,

and

cov(ai, θi) = ρaθσaσθ = w(λ)E
[(

(1 − λ)θ̄ + λ�θi

)
θi

]
= w(λ)

(
(1 − λ)ρθθ + λ(1 − ρθθ )

)
σ 2

θ ,

which establishes the result. �
Proof of Proposition 3. The result follows directly from solving the following maximization 
problem:

max
λ

(
(1 − λ)ρθθ + λ(1 − ρθθ )

(1 − λ)2ρθθ + λ2(1 − ρθθ )

)2

(1 − λ)2ρθθ .

The solution (17) follows from Proposition 6. �
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Proof of Proposition 4. Given a noise free equilibrium parametrized by λ we have that:

cov(ai, θ̄ ) = w(λ)(1 − λ)θ̄ = ((1 − λ)ρθθ + λ(1 − ρθθ ))

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))
(1 − λ)θ̄,

cov(ai,�θi) = w(λ)λ�θi = ((1 − λ)ρθθ + λ(1 − ρθθ ))

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))
λ�θi.

But, note that if λ < λ̂, then λ
(1−r)

< (1 − λ), but then

cov(ai,�θi) = ((1 − λ)ρθθλ + λ2(1 − ρθθ ))

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))
�θi

≥ ((1 − λ)2(1 − r)ρθθ + λ2(1 − ρθθ ))

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))
= 1,

with strict inequality if λ > λ̂. Thus, the response to the idiosyncratic shock is greater than in the 
complete information equilibrium if λ ∈ (̂λ, 1). For the second part we repeat the same argument. 
Note that if λ < λ̂, then λ < (1 − λ)(1 − r), but then:

cov(ai, θ̄ ) = ((1 − λ)2ρθθ + (1 − λ)λ(1 − ρθθ ))

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))
θ̄

≥ 1

1 − r

((1 − λ)2(1 − r)ρθθ + λ2(1 − ρθθ ))

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))
= 1

1 − r
,

with strict inequality if λ < λ̂. �
Proof of Proposition 5. The comparative statics with respect to the argmax are shown by prov-
ing that the quantities have a unique maximum, which is interior, and then use the sign of the 
cross derivatives (the derivative with respect to λ and r). The ordering of the information struc-
tures that maximizes the different second moments is proved by comparing the derivatives.

(2.) We begin by rewriting the individual variance, and using (12) we can write it in terms 
of λ:

σ 2
a =

(
((1 − λ)ρθθ + λ(1 − ρθθ ))

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))

)2(
(1 − λ)2ρθθ + λ2(1 − ρθθ )

)
σ 2

θ

= ρθθ

(1 + yx)2

((1 − r) + x2)2

(
1 + x2)σ 2

θ ,

where

x �
√

(1 − ρθθ )λ√
ρθθ (1 − λ)

, y �
√

1 − ρθθ√
ρθθ

. (46)

Note that x is strictly increasing in λ, and if λ ∈ [0, 1] then x ∈ [0, ∞], and thus maximizing 
with respect to x ∈ [0, ∞] is equivalent to maximizing with respect to λ ∈ [0, 1]. Finding the 
derivative we get:

∂σ 2
a

∂x
= −2(xy + 1)(x3 + (2r − 1)yx2 + (r + 1)x − (1 − r)y)

(x2 + 1 − r)3
σ 2

θ .

It is easy to see that dσ 2
a

dx
is positive at x = 0 and negative if we take an x large enough, and thus 

the maximum must be in x ∈ (0, ∞). We would like to show that the polynomial:
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(
x3 + (2r − 1)yx2 + (r + 1)x − (1 − r)y

)
,

has a unique root in x ∈ (0, ∞). If r < −1, then the function is increasing in x and has a negative 
value at x = 0, thus it has a unique root. If x > 1/2, then the function is negative and decreasing 
at x. Since it is a cubic polynomial and the term next to x3 is positive, it must have a unique 
positive root. For r ∈ [−1, 1/2] we define the determinant of the cubic equation:

� = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2.

We know that if � < 0 then the polynomial has a unique root. Replacing by the respective values 
of the cubic polynomial we get:

� = 4y4(2r − 1)3(1 − r) + y2((2r − 1)2(1 + r)2 − 18
(
1 − r2)(2r − 1) − 27(1 − r)2)

− 4(1 + r)3,

using the fact that for r ∈ [−1, 1/2] we have that (2r − 1) ≤ 0 and 1 + r ≥ 0, we know that the 
term with y4 and without y are negative. We just need to check the term with y2, but this is also 
negative for r ∈ [−1, 1/2]. Thus, � < 0, and thus for r ∈ [−1, 1/2] the polynomial has a unique 
root.

Thus, we have that there exists a unique λ that maximizes σ 2
a . Finally, we have that:

∂σ 2
a

∂r
= 2

(1 − λ)2ρθθ

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))
σ 2

a .

Note that

∂

∂λ

(1 − λ)2ρθθ

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))
< 0,

and thus at the maximum:

∂2σ 2
a

∂r∂λ
= 2σ 2

a

∂

∂λ

(1 − λ)2ρθθ

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))
< 0,

and thus arg maxλσ
2
a is decreasing in r .

Next, we consider the aggregate variance ρaaσ
2
a , and write it in terms of λ:

ρaaσ
2
a =

(
((1 − λ)ρθθ + λ(1 − ρθθ ))

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))

)2

(1 − λ)2ρθθσ
2
θ

= ρθθ

(1 + yx)2

((1 − r) + x2)2
σ 2

θ , (47)

where x and y are defined as in (46). Maximizing with respect to x ∈ [0, ∞] is equivalent to 
maximizing with respect to λ ∈ [0, 1]. Finding the derivative we get:

∂ρaaσ
2
a

∂x
= −2(xy + 1)(2x + (x2 + r − 1)y)

(x2 + 1 − r)3
σ 2

θ . (48)

Again, we have that (2x + (x2 + r − 1)y) has a unique root in (0, ∞) Thus, we have that there 
exists a unique λ that maximizes ρaaσ

2
a . Finally, we have that:

∂ρaaσ
2
a = 2

(1 − λ)2ρθθ

2 2
ρaaσ

2
a .
∂r ((1 − r)(1 − λ) ρθθ + λ (1 − ρθθ ))
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Note that,

∂

∂λ

(1 − λ)2ρθθ

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))
< 0,

and thus at the maximum ∂
2σ 2

a

∂r∂λ
< 0, and thus arg maxλρaaσ

2
a is decreasing in r .

Finally, we consider the dispersion, (1 − ρaa)σ
2
a , expressed in terms of λ:

(1 − ρaa)σ
2
a =

(
((1 − λ)ρθθ + λ(1 − ρθθ ))

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))

)2

λ2(1 − ρθθ )σ
2
θ

= ρθθ

(1 + yx)2

((1 − r) + x2)2
x2σ 2

θ ,

where x and y are defined in (46). As before, maximizing with respect to x ∈ [0, ∞] is equivalent 
to maximizing with respect to λ ∈ [0, 1]. Finding the derivative we get:

∂(1 − ρaa)σ
2
a

∂x
= −2x(xy + 1)(x2 + 2(r − 1)yx + r − 1)

(x2 + 1 − r)3
σ 2

θ .

Again, we have that (x2 + 2(r − 1)yx + r − 1) has a unique root in (0, ∞) Thus, there exists a 
unique λ that maximizes (1 − ρaa)σ

2
a . Finally, we have that:

∂(1 − ρaa)σ
2
a

∂r
= 2

(1 − λ)2ρθθ

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))
(1 − ρaa)σ

2
a .

Note that

∂

∂λ

(1 − λ)2ρθθ

((1 − r)(1 − λ)2ρθθ + λ2(1 − ρθθ ))
< 0,

and thus at the maximum ∂
2σ 2

a

∂r∂λ
< 0, and thus arg maxλ (1 − ρaa)σ

2
a is decreasing in r .

(1.) Finally, we want to show that argmaxλ(1 −ρaa)σ
2
a > argmaxλσ

2
a > argmaxλρaaσ

2
a . These 

inequalities follows from comparing the derivatives of (1 − ρaa)σ
2
a , σ 2

a and ρaaσ
2
a with respect 

to λ (or equivalently x). It is easy to see that:

∂ log(1 − ρaa)σ
2
a

∂x
<

∂ logσ 2
a

∂x
<

∂ logρaaσ
2
a

∂x
.

Since the derivatives satisfy the previous inequalities, and the quantities have a unique maximum, 
the argument of the maximum must also satisfy the same inequalities.

(3.) The comparative static results with respect to the maximum follow directly from the 
envelope theorem. �
Proof of Proposition 6. We first solve for maxλ{ρaaσ

2
a }. By setting (48) equal to 0, we have 

that the aggregate volatility is maximized at,

x =
√

1 + y2(1 − r) − 1

y
.

In terms of the original variables this can be written as follows:

λ =
ρθθ (

√
1−r
ρθθ

+ r + r − 2)
.

(r − 4)ρθθ + 1
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Substituting the solution in (47) and using the definitions of x and y we get that the maximum 
volatility is equal to:

σ 2
θ (1 − ρθθ )

2

4(
√

ρθθ − √
ρθθ + (1 − r)(1 − ρθθ ))2

.

Using the definition of σθ̄ and σ 2
θ we get (26). Note that by imposing r = 0 we also get (17)

and (18). �
Proof of Corollary 3. It follows directly from (26) that:

lim
σ 2

θ̄
→0

max
λ

{
ρaaσ

2
a

} = σ 2
θ

4(1 − r)
.

Thus, we are only left with proving that,

lim
σ 2

�θi
→0

max
λ

{
ρaaσ

2
a

} = σ 2
θ̄
/(1 − r)2.

The limit can be easily calculated using L’Hopital’s rule. That is, just note that as σ 2
�θi

→ 0 we 
have that:

4
(
σθ̄ −

√
σ 2

θ̄
+ (1 − r)σ 2

�θi

)2 ≈ σ 4
�θi

(1 − r)2/σ 2
θ̄

+ o
(
σ 6

�θi

)
,

and hence we get the result. �
Proof of Lemma 1. We need to prove that given the assumption of symmetry, the parame-
ters (μa, ρaa, ρaθ , ρaφ, σa) are sufficient to characterize the distribution of the random variables 
(θi, θ̄ , ai, A). Clearly, we have that μa = μA, as it follows from the law of iterated expectations. 
By the previous definition (and decomposition) of the idiosyncratic shock θi , we observe that 
the expectations of the following products all agree: Ei[ai θ̄ ] = Ei[Aθθi] = Ei[Aθ̄ ]. This can be 
easily seen as follows:

E[θiA] = E[θ̄A] +E[�θiA] = E[θ̄A] +E
[
A ·E[�θi |A]︸ ︷︷ ︸

=0

] = E[θ̄A],

where we just use the law of iterated expectations and the fact that the expected value of an
idiosyncratic variable conditioned on an aggregate variable must be 0. Thus:

cov(ai, θ̄ ) = cov(A, θi) = cov(A, θ̄) = cov(ai, θj ) = E[aiθj ] − μaμθ = ρaφσθσa.

Similarly, since we consider a symmetric Bayes correlated equilibrium, the covariance of the 
actions of any two individuals, ai and aj , which is denoted by ρaaσ

2
a , is equal to the aggregate 

variance. Once again, this can be easily seen as follows,

E[aiaj ] = E
[
A2]+E[A�aj ] +E[�aiA] +E[�ai�aj ] = E

[
A2],

where in this case we need to use that the equilibrium is symmetric and thus E[�ai�aj ] = 0. 
Thus, we have σ 2

A = cov(ai, aj ) = cov(A, ai) = ρaaσ
2
a . �

Proof of Proposition 7. The moment equalities (1) and (2) were established in (30) and (31). 
Thus we proceed to verify that the inequality constraints (3) are necessary and sufficient to guar-
antee that the matrix V is positive semidefinite.



D. Bergemann et al. / Journal of Economic Theory 158 (2015) 427–465 461
Here we express the equilibrium conditions, by a change of variables, in terms of different 
variables, which facilitates the calculation. Let:

M �

⎛⎜⎜⎝
1 −1 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

⎞⎟⎟⎠ .

Thus, we have that:⎛⎜⎝
�θi

θ̄

�ai

A

⎞⎟⎠ ∼N

⎛⎜⎝
⎛⎜⎝

0
μθ

0
μa

⎞⎟⎠ ,MVM ′

⎞⎟⎠ ,

where

V⊥ � MVM ′ =

⎛⎜⎜⎝
(1 − ρθθ )σ

2
θ 0 (ρaθ − ρaφ)σaσθ 0

0 ρθθσ
2
θ 0 ρaφσaσθ

(ρaθ − ρaφ)σaσθ 0 (1 − ρaa)σ
2
a 0

0 ρaφσaσθ 0 ρaaσ
2
a

⎞⎟⎟⎠ . (49)

We use V⊥ to denote the variance/covariance matrix expressed in terms of (�θi, θ̄ , �ai, A). It 
is easy to verify that V⊥ is positive semidefinite if and only if the inequality conditions (3) are 
satisfied. To check this it is sufficient to note that the leading principal minors are positive if and 
only if these conditions are satisfied, and thus V⊥ is positive semidefinite if and only if these 
conditions are satisfied. �
Proof of Proposition 8. (⇐) We first prove that if the variables (θi, θ̄ , ai, A) form a Bayes 
Nash equilibrium for some information structure Ii (and associated signals), then the variables 
(θi, θ̄ , ai, A) also form a Bayes correlated equilibrium. Consider the case in which agents receive 
normally distributed signals through the information structure Ii , which by minor abuse of no-
tation also serves as conditioning event. Then in any Bayes Nash equilibrium of the game, we 
have that the actions of the agents are given by:

ai = rE[A|Ii] +E[θi |Ii], ∀i,∀Ii , (50)

and since the information is normally distributed, the variables (θi, θ̄ , ai, A) are jointly normal 
as well. By taking the expectation of (50) conditional on the information set I ′

i = {Ii , ai} we get:

E[ai |Ii , ai] = ai = rE
[
E[A|Ii]

∣∣Ii , ai

]+E
[
E[θi |Ii]

∣∣Ii , ai

]
= rE[A|Ii , ai] +E[θi |Ii , ai]. (51)

In other words, agents know the recommended action they are supposed to take, and thus, we can 
assume that the agents condition on their own actions. By taking expectations of (51) conditional 
on {ai} we get:

E[ai |ai] = ai = rE
[
E[A|Ii , ai]

∣∣ai

]+E
[
E[θi |Ii , ai]

∣∣ai

]
= rE[A|ai] +E[θi |ai], (52)

where we used the law of iterated expectations. In other words, the information contained in {ai}
is a sufficient statistic for agents to compute their best response, and thus the agents compute 
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the same best response if they know {Ii, ai} or if they just know {ai}. Yet, looking at (52), by 
definition (θi, θ̄ , ai, A) form a Bayes correlated equilibrium.

(⇒) We now prove that if (θi, θ̄ , ai, A) form a Bayes correlated equilibrium, then there exists 
an information structure Ii such that the variables (θi, θ̄ , ai, A) form a Bayes Nash equilib-
rium when agents receive this information structure. We consider the case in which the variables 
(θi, θ̄ , ai, A) form a Bayes correlated equilibrium, and thus the variables are jointly normal and

ai = rE[A|ai] +E[θi |ai]. (53)

Since the variables are jointly normal we can always find w ∈R and λ ∈ [−1, 1], such that:

ai = w
(
λ�θi + (

1 − |λ|)θ̄ + εi

)
.

The variables (λ, w) and the random variable ε are defined by the following equations of the 
Bayes correlated equilibrium distribution:

wλ = cov(ai,�θi)

σ 2
�θi

, w
(
1 − |λ|) = cov(ai, θ̄ )

σ 2
θ̄

,

and

ε =
ai − cov(ai ,�θi )�θi

σ 2
�θi

− cov(ai ,θ̄ )

σ 2
θ̄

w
.

Now consider the case in which agents receive a one-dimensional signal

si �
ai

w
= (

λ�θi + (1 − λ)θ̄ + εi

)
. (54)

Then, by definition, we have that:

ai = wsi = rE[A|ai] +E[θi |ai] = rE[A|si] +E[θi |si],
where we use the fact that conditioning on ai is equivalent to conditioning on si . Thus, when 
agent i receives information structure (and associated signal si): Ii = {si}, then agent i taking 
action ai = wsi constitutes a Bayes Nash equilibrium, as it complies with the best response con-
dition. Thus, the distribution (θi, θ̄ , ai, A) forms a Bayes Nash equilibrium when agents receive 
signals Ii = {si}. �
Proof of Proposition 9. Note that (54) has the form stated in the Proposition, and thus this was 
implicitly established by the proof of Proposition 8. �

To establish Proposition 12, we use the following lemma that is of independent interest. Con-
sider an arbitrary continuous function:

ψ : [0,1] × [0,1] × [−1,1] →R,

whose domain is given by the triple of correlation coefficients: (ρaa, ρaθ , ρaφ).

Lemma 2. If ψ(ρaa, ρaθ , ρaφ) is a continuous function, strictly increasing in ρaθ and weakly 
increasing in ρaφ , then the Bayes correlated equilibrium that maximizes ψ is a noise free Bayes 
correlated equilibrium.
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Proof. By rewriting the constraints (34) of Proposition 7 we obtain:

1. ρθθρaa − (ρaφ)2 ≥ 0;
2. (1 − ρaa)(1 − ρθθ ) − (ρaθ − ρaφ)2 ≥ 0.

If ψ(ρaa, ρaθ , ρaφ) is strictly increasing, then in the optimum the above inequality (2) must 
bind. Moreover, if the constraint (1) does not bind, then we can just increase ρaθ and ρaφ in equal 
amounts, without violating (2) and increasing the value of ψ . Thus, in the maximum of ψ we 
must have that both bind. �
Proof of Proposition 10. First, it is easy to see that for any coefficients (ρaa, ρaθ , ρaφ) in the 
boundary, we must have that both inequalities in (34) must be satisfied with equality. Otherwise, 
we could always increase ρaθ and ρaφ in the right amounts without breaking either inequality, 
and thus achieving a higher value of ρaθ . Second, it is easy to solve for ρaθ in terms of ρaa and 
ρθθ . Using that ρaθ ≥ 0, we must have that:

ρaθ = ∣∣√ρaaρθθ ±√
(1 − ρaa)(1 − ρθθ )

∣∣ and ρaφ = ±√
ρaaρθθ .

Finally, it is clear that the boundary will be given by:

ρaθ = √
ρaaρθθ +√

(1 − ρaa)(1 − ρθθ ),

as this gives the maximum value for ρaθ . �
Proof of Proposition 11. From Proposition 10, we must have that both inequalities in (34) must 
be satisfied with equality. From (38) it is clear that if both inequalities in (34) are satisfied with 
equality, then ai must be deterministic conditional on �θi and θ̄ . Moreover, give the properties 
of multivariate normal distributions, we must have that ai is a linear combination of �θi and θ̄ . 
Thus, without loss of generality, for any coefficients (ρaa, ρaθ , ρaφ) in the boundary, we must 
have that:

ai = w(λ)
((

1 − |λ|)θ̄ + λ�θi

)
with λ ∈ [−1,1]. (55)

This comes from the fact that we can calculate the outcome of the Bayes correlated equilibrium 
as the outcome of a Bayes Nash equilibrium when agents get signals of the form (35), with 
σ 2

ε = 0. For any λ such that players action is given by (55) we have that the correlation in actions 
is given by:

ρaa = (1 − |λ|)2ρθθ

(1 − |λ|)2ρθθ + λ2(1 − ρθθ )
.

Finally, for any λ ∈ [0, 1] we have that the correlation of players action for information structure 
−λ yields the same correlation of action as information structure λ, but strictly lower correlation 
between action and payoff state, ρaθ . Thus, all noise free information structures with λ ∈ (−1, 0)

cannot be in the boundary as they yield strictly lower ρaθ than noise free information struc-
tures with λ ∈ [0, 1]. Thus, all Bayes correlated equilibrium on the boundary form a Bayes Nash 
equilibrium with a noise free information structure with λ ∈ [0, 1].

On the other hand, all Bayes Nash equilibrium with a noise free information structure with 
λ ∈ [0, 1] form a Bayes correlated equilibrium on the boundary. This just come from the fact that 
actions in Bayes Nash equilibrium with a noise free information structure are linear combination 
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of θ̄ and �θ . Moreover, from (13) and (14) it is easy to see that λ ∈ [0, 1] span all correlations 
satisfying,

ρaθ = √
ρaaρθθ +√

(1 − ρaa)(1 − ρθθ ),

with ρaa ∈ [0, 1]. �
Proof of Proposition 12. From (33) the individual volatility, aggregate volatility and dispersion 
can be written as follows:

ρaθσθ

1 − rρaa

, ρaa

ρaθσθ

1 − rρaa

, (1 − ρaa)
ρaθσθ

1 − rρaa

,

and the result follows directly. �
Proof of Proposition 13. See supplemental online Appendix. �
Proof of Proposition 14. See supplemental online Appendix. �
Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2014.12.002.
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