Diversity in the numeral systems of Australian hunter-gatherers

Jason Zentz & Claire Bowern
jason.zentz@yale.edu, claire.bowern@yale.edu

Yale University

85th Annual Meeting of the Linguistic Society of America
Pittsburgh, PA
January 9, 2011
Abstract

While the numeral systems of Australian languages are small, they are not uniform in all respects. In this paper we shed light on the extent of diversity in small numeral systems by systematically surveying 121 languages from Pama-Nyungan and non-Pama-Nyungan families.
Outline

1 Introduction

2 Features of Australian numeral systems
 - Extent of system
 - Internal structure
 - Secondary meanings of numerals
 - Etymologies of numerals

3 Conclusions
Stereotypes of Australian numeral systems

One, two, (three), many (Dixon 1980: 107–108)

Often excluded from discussion (e.g., Hanke 2010: 64)

Or claimed that they aren't numeral systems at all
Stereotypes of Australian numeral systems

- One, two, (three), many (Dixon 1980: 107–108)
Stereotypes of Australian numeral systems

- One, two, (three), many (Dixon 1980: 107–108)

http://xkcd.com/764/
Stereotypes of Australian numeral systems

- One, two, (three), many (Dixon 1980: 107–108)

http://xkcd.com/764/

- Often excluded from discussion (e.g., Hanke 2010: 64)
Stereotypes of Australian numeral systems

- One, two, (three), many (Dixon 1980: 107–108)

- Often excluded from discussion (e.g., Hanke 2010: 64)
- Or claimed that they aren’t numeral systems at all

http://xkcd.com/764/
Overview
Overview

1. Survey of Australian numeral systems
Overview

1. Survey of Australian numeral systems
2. Extent of numeral systems

This is timely, given the current interest in cultural constraints on language (e.g., Evans & Levinson 2009).
Overview

1. Survey of Australian numeral systems
2. Extent of numeral systems
3. How numerals are combined
Overview

1. Survey of Australian numeral systems
2. Extent of numeral systems
3. How numerals are combined
4. Whether numerals may denote inexact quantities
Overview

1. Survey of Australian numeral systems
2. Extent of numeral systems
3. How numerals are combined
4. Whether numerals may denote inexact quantities
5. Etymologies of atomic numerals
This is timely, given the current interest in cultural constraints on language (e.g., Evans & Levinson 2009).
Data sources

Bowern's Pama-Nyungan comparative lexical database; supplemented by information from grammars and fieldnotes (where available); numerals and quantifiers extracted; partial data omitted, leaving:

121 doculects/varieties:
- Ten Pama-Nyungan subgroups
- Six non-Pama-Nyungan families
Data sources

- Bowern’s Pama-Nyungan comparative lexical database;
Data sources

- Bowern’s Pama-Nyungan comparative lexical database;
- Supplemented by information from grammars and fieldnotes (where available);
Data sources

- Bowern’s Pama-Nyungan comparative lexical database;
- Supplemented by information from grammars and fieldnotes (where available);
- Numerals and quantifiers extracted;
Data sources

- Bowern’s Pama-Nyungan comparative lexical database;
- Supplemented by information from grammars and fieldnotes (where available);
- Numerals and quantifiers extracted;
- Partial data omitted, leaving:
Data sources

- Bowern’s Pama-Nyungan comparative lexical database;
- Supplemented by information from grammars and fieldnotes (where available);
- Numerals and quantifiers extracted;
- Partial data omitted, leaving:
 - 121 doculects/varieties:
Data sources

- Bowern’s Pama-Nyungan comparative lexical database;
- Supplemented by information from grammars and fieldnotes (where available);
- Numerals and quantifiers extracted;
- Partial data omitted, leaving:
- 121 doculects/varieties:
 - Ten Pama-Nyungan subgroups
Data sources

- Bowern’s Pama-Nyungan comparative lexical database;
- Supplemented by information from grammars and fieldnotes (where available);
- Numerals and quantifiers extracted;
- Partial data omitted, leaving:
 - 121 doculects/varieties:
 - Ten Pama-Nyungan subgroups
 - Six non-Pama-Nyungan families
Analysis parameters

- The forms for basic numerals; subsequent analysis provided data regarding:
 - The extent of the numeral system (that is, how high the numbers go);
 - How (and whether) numerals are combined to form higher numerals;
 - Etymologies of numeral forms (and whether any are likely loans);
 - Whether there is information about the use of numerals for vague counting.
 - (Whether there are ancillary counting systems.)
Analysis parameters

- The forms for basic numerals; subsequent analysis provided data regarding:
 - The extent of the numeral system (that is, how high the numbers go);
The forms for basic numerals; subsequent analysis provided data regarding:

- The extent of the numeral system (that is, how high the numbers go);
- How (and whether) numerals are combined to form higher numerals;
The forms for basic numerals; subsequent analysis provided data regarding:

- The extent of the numeral system (that is, how high the numbers go);
- How (and whether) numerals are combined to form higher numerals;
- Etymologies of numeral forms (and whether any are likely loans);
The forms for basic numerals; subsequent analysis provided data regarding:

- The extent of the numeral system (that is, how high the numbers go);
- How (and whether) numerals are combined to form higher numerals;
- Etymologies of numeral forms (and whether any are likely loans);
- Whether there is information about the use of numerals for vague counting.
Analysis parameters

- The forms for basic numerals; subsequent analysis provided data regarding:
 - The extent of the numeral system (that is, how high the numbers go);
 - How (and whether) numerals are combined to form higher numerals;
 - Etymologies of numeral forms (and whether any are likely loans);
 - Whether there is information about the use of numerals for vague counting.

(Whether there are ancillary counting systems.)
Outline

1. Introduction

2. Features of Australian numeral systems
 - Extent of system
 - Internal structure
 - Secondary meanings of numerals
 - Etymologies of numerals

3. Conclusions
Extent of system

No systems in the survey extend above 20, so they are all “restricted” (Comrie 2005). But, upper limits vary:
No systems in the survey extend above 20, so they are all “restricted” (Comrie 2005)
No systems in the survey extend above 20, so they are all “restricted” (Comrie 2005).

But, upper limits vary:
Combining numerals

General observation

75 of the 121 surveyed languages combine smaller numerals to create larger ones.

Common patterns

1, 2, 3, 2:2, 2:2:1

10 = 2:5 or 5:2 or 5:5
Combining numerals

General observation

- 75 of the 121 surveyed languages combine smaller numerals to create larger ones.
Combining numerals

General observation

- 75 of the 121 surveyed languages combine smaller numerals to create larger ones.

Common patterns
Combining numerals

General observation
- 75 of the 121 surveyed languages combine smaller numerals to create larger ones.

Common patterns
- 1, 2, 3
Combining numerals

General observation

- 75 of the 121 surveyed languages combine smaller numerals to create larger ones.

Common patterns

- 1, 2, 3, 2:2
Combining numerals

General observation

- 75 of the 121 surveyed languages combine smaller numerals to create larger ones.

Common patterns

- 1, 2, 3, 2:2, 2:2:1
Combining numerals

General observation
- 75 of the 121 surveyed languages combine smaller numerals to create larger ones.

Common patterns
- 1, 2, 3, 2:2, 2:2:1
- 1, 2, 2:1
Combining numerals

General observation
- 75 of the 121 surveyed languages combine smaller numerals to create larger ones.

Common patterns
- 1, 2, 3, 2:2, 2:2:1
- 1, 2, 2:1, 2:2
Combining numerals

General observation
- 75 of the 121 surveyed languages combine smaller numerals to create larger ones.

Common patterns
- 1, 2, 3, 2:2, 2:2:1
- 1, 2, 2:1, 2:2, 2:2:1
Combining numerals

General observation
- 75 of the 121 surveyed languages combine smaller numerals to create larger ones.

Common patterns
- 1, 2, 3, 2:2, 2:2:1
- 1, 2, 2:1, 2:2, 2:2:1
- 10 = 2:5
Combining numerals

General observation
- 75 of the 121 surveyed languages combine smaller numerals to create larger ones.

Common patterns
- 1, 2, 3, 2:2, 2:2:1
- 1, 2, 2:1, 2:2, 2:2:1
- 10 = 2:5 or 5:2
Combining numerals

General observation
- 75 of the 121 surveyed languages combine smaller numerals to create larger ones.

Common patterns
- 1, 2, 3, 2:2, 2:2:1
- 1, 2, 2:1, 2:2, 2:2:1
- $10 = 2:5$ or $5:2$ or $5:5$
Do small number systems have bases?
Do small number systems have bases?

Terminology (Hanke 2010: 68–69)
Do small number systems have bases?

Terminology (Hanke 2010: 68–69)

- **additive base** (Greenberg’s (1978) *augend*):
Do small number systems have bases?

Terminology (Hanke 2010: 68–69)

- **additive base** (Greenberg’s (1978) *augend*):

 \[16 = 6 + 10\]
Do small number systems have bases?

Terminology (Hanke 2010: 68–69)

- **additive base** (Greenberg’s (1978) *augend*):
 \[16 = 6 + 10 \]

- **multiplicative base** (Greenberg’s (1978) *multiplicand*):
Do small number systems have bases?

Terminology (Hanke 2010: 68–69)

- **Additive base** (Greenberg’s (1978) *augend*):
 \[16 = 6 + 10 \]

- **Multiplicative base** (Greenberg’s (1978) *multiplicand*):
 \[40 = 4 \times 10 \]
Do small number systems have bases?

Terminology (Hanke 2010: 68–69)

- **additive base** (Greenberg’s (1978) *augend*):
 \[16 = 6 + 10 \]

- **multiplicative base** (Greenberg’s (1978) *multiplicand*):
 \[40 = 4 \times 10 \]

- **additive-multiplicative base** (Greenberg’s (1978) *base*):
Do small number systems have bases?

Terminology (Hanke 2010: 68–69)

- **additive base** (Greenberg’s (1978) *augend*):
 \[16 = 6 + 10 \]

- **multiplicative base** (Greenberg’s (1978) *multiplicand*):
 \[40 = 4 \times 10 \]

- **additive-multiplicative base** (Greenberg’s (1978) *base*):
 \[68 = (6 \times 10) + 8 \]
Do small number systems have bases?

Bases in the Australian survey
Do small number systems have bases?

Bases in the Australian survey

- 2:1 for ‘three’ must be $2 + 1$
Do small number systems have bases?

Bases in the Australian survey

- 2:1 for ‘three’ must be $2 + 1$
 \rightarrow 2 is an additive base
Do small number systems have bases?

Bases in the Australian survey

- 2:1 for ‘three’ must be $2 + 1$
 \rightarrow 2 is an additive base

- 2:2 for ‘four’ could be $2 + 2$
Do small number systems have bases?

Bases in the Australian survey

- 2:1 for ‘three’ must be $2 + 1$
 \rightarrow 2 is an additive base

- 2:2 for ‘four’ could be $2 + 2$
 \rightarrow 2 is an additive base
Bases in the Australian survey

- 2:1 for ‘three’ must be $2 + 1$
 \rightarrow 2 is an additive base

- 2:2 for ‘four’ could be $2 + 2$
 \rightarrow 2 is an additive base
 Or, 2:2 for ‘four’ could be 2×2
Do small number systems have bases?

Bases in the Australian survey

- 2:1 for ‘three’ must be $2 + 1$
 \rightarrow 2 is an additive base
- 2:2 for ‘four’ could be $2 + 2$
 \rightarrow 2 is an additive base
 Or, 2:2 for ‘four’ could be 2×2
 \rightarrow 2 is a multiplicative base
Bases in the Australian survey

- 2:1 for ‘three’ must be $2 + 1$
 \rightarrow 2 is an additive base

- 2:2 for ‘four’ could be $2 + 2$
 \rightarrow 2 is an additive base
 Or, 2:2 for ‘four’ could be 2×2
 \rightarrow 2 is a multiplicative base

- Is 2:2:1 for ‘five’ formed through addition alone or through both multiplication and addition?
Variation in numeral composition
Variation in numeral composition

Multiple ways of forming numerals

- Warumungu: 3 = ‘three’ or 2 + 1
Variation in numeral composition

Multiple ways of forming numerals

- Warumungu: 3 = ‘three’ or 2 + 1
- Wiradjuri: 4 = ‘four’ or 2:2
Variation in numeral composition

Multiple ways of forming numerals

- Warumungu: $3 = \text{‘three’ or } 2 + 1$
- Wiradjuri: $4 = \text{‘four’ or } 2:2$
- Gooniyandi: $5 = 2:2:1, 3 + 2, \text{or ‘hand’}$
Multiple ways of forming numerals

- Warumungu: $3 = \text{‘three’ or } 2 + 1$
- Wiradjuri: $4 = \text{‘four’ or } 2:2$
- Gooniyandi: $5 = 2:2:1, 3 + 2, \text{or ‘hand’}$
- Gamilaraay: $6 = 2 \times 3 \text{ or } 1 + 5$
Are Australian numerals really numerals?

Evidence includes:

- Jaru: murrkun ‘three, few’
- Yan-nha: Nu (YolNu) wal¯ip ‘one’
- m¨ arrma ‘two’
- l¯urrkun ‘three, a few, a little, some, several’
- goku wal¯ip ‘five, a handful, a bunch’

Hale (1975); Dixon (1980)

Australian languages don’t have numerals, they have quantifiers which can denote more or less specific quantities.

Zentz & Bowern

LSA 2011: Australian Numerals
Are Australian numerals really numerals?

Hale (1975); Dixon (1980)

- Australian languages don’t have numerals, they have quantifiers which can denote more or less specific quantities.
Are Australian numerals really numerals?

Hale (1975); Dixon (1980)

- Australian languages don’t have numerals, they have quantifiers which can denote more or less specific quantities.
- Evidence includes:
 - Jaru *murrkun* ‘three, few’
Are Australian numerals really numerals?

Hale (1975); Dixon (1980)

- Australian languages don’t have numerals, they have quantifiers which can denote more or less specific quantities.
- Evidence includes:
 - Jaru *murrkun* ‘three, few’
 - Yan-nhaŋu (Yolŋu)
 - *walip* ‘one’
 - *märrma* ‘two’
 - *lurrkun* ‘three, a few, a little, some, several’
 - *goku walip* [hand one] ‘five, a handful, a bunch’
Are Australian numerals really numerals?

Our survey
Are Australian numerals really numerals?

Our survey

- 29 languages allow vague readings
Are Australian numerals really numerals?

Our survey

- 29 languages allow vague readings
- 34 languages do not allow vague readings
Are Australian numerals really numerals?

Our survey

- 29 languages allow vague readings
- 34 languages do not allow vague readings
- 58 languages had no conclusive information
Languages with and without vague numerals
Are numerals and vague quantifiers related?

Some languages show an etymological (but not synchronic) relationship between numerals and vague quantifiers:

- Garrwa (Furby & Furby 1977)
 - 'three': kujarra yalku (2 + 1)
 - 'four': kujarra kujarra (2 + 2)
 - 'a few': kujajarra

Other languages have distinct numerals and quantifiers throughout (e.g. Bardi).
Are numerals and vague quantifiers related?

Some languages show an etymological (but not synchronic) relationship between numerals and vague quantifiers:
Are numerals and vague quantifiers related?

Some languages show an etymological (but not synchronic) relationship between numerals and vague quantifiers:

Garrwa (Furby & Furby 1977)

- 'three': kujarra yalku (2 + 1)
- 'four': kujarra kujarra (2 + 2)
- 'a few': kujajarra
Are numerals and vague quantifiers related?

Some languages show an etymological (but not synchronic) relationship between numerals and vague quantifiers:

Garrwa (Furby & Furby 1977)

- ‘three’: *kujarra yalku* \((2 + 1)\)
Are numerals and vague quantifiers related?

Some languages show an etymological (but not synchronic) relationship between numerals and vague quantifiers:

Garrwa (Furby & Furby 1977)

- ‘three’: *kujarra yalku* \((2 + 1)\)
- ‘four’: *kujarra kujarra* \((2 + 2)\)
Are numerals and vague quantifiers related?

Some languages show an etymological (but not synchronic) relationship between numerals and vague quantifiers:

Garrwa (Furby & Furby 1977)

- ‘three’: kujarra yalku (2 + 1)
- ‘four’: kujarra kujarra (2 + 2)
- ‘a few’: kujajarra
Are numerals and vague quantifiers related?

Some languages show an etymological (but not synchronic) relationship between numerals and vague quantifiers:

Garrwa (Furby & Furby 1977)

- ‘three’: *kujarra yalku* \((2 + 1)\)
- ‘four’: *kujarra kujarra* \((2 + 2)\)
- ‘a few’: *kujjarra*

Other languages have distinct numerals and quantifiers throughout (e.g. Bardi).
General tendencies

Reconstructibility of numerals

Some families have reconstructible numerals: e.g., Nyulnyulan

one *warinyji

two *kujarra (Loan into Proto-Nyulnyulan)

three *yirrjara

four *kujarrakujarra

(five) (*nimarla)
Reconstructibility of numerals

Some families have reconstructible numerals:

- Nyulnyulan: one *warinyji, two *kujarra (Loan into Proto-Nyulnyulan), three *yirrjara, four *kujarrakujarra, (five) *nimarla
Reconstructibility of numerals

Some families have reconstructible numerals:

- **e.g., Nyulnyulan**

<table>
<thead>
<tr>
<th>Cardinal</th>
<th>Reconstructed Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td>*warinyji</td>
</tr>
<tr>
<td>two</td>
<td>*kujarra</td>
</tr>
<tr>
<td>three</td>
<td>*yirrjara</td>
</tr>
<tr>
<td>four</td>
<td>*kujarrakujjarra</td>
</tr>
<tr>
<td>(five)</td>
<td>(*nimarla)</td>
</tr>
</tbody>
</table>
General tendencies

Reconstructibility of numerals

- Numerals in Pama-Nyungan are difficult to reconstruct beyond the lower subgroups.
Etymological sources of numerals
Etymological sources of numerals

- **Composition** (i.e., other numerals):
Etymological sources of numerals

- **Composition** (i.e., other numerals):
 - Wangkumara *parrkukurnu* ‘3’ = 2+1
Etymological sources of numerals

- **Composition** (i.e., other numerals):
 - Wangkumara *parrkukurnu* ‘3’ = 2+1
 - Diyari *parrkulu* ‘3’ via compound reduction
Etymological sources of numerals

- **Composition** (i.e., other numerals):
 - Wangkumara *parrkukurnu* ‘3’ = 2+1
 - Diyari *parrku* ‘3’ via compound reduction

- **Loans:**
Etymological sources of numerals

- **Composition** (i.e., other numerals):
 - Wangkumara *parrkukurnu* ‘3’ = 2+1
 - Diyari *parrkuлу* ‘3’ via compound reduction

- **Loans**: e.g., *kutyarra* ‘2’ into Proto-Nyulnyulan
Etymological sources of numerals

- **Composition** (i.e., other numerals):
 - Wangkumara *parrukurnu* ‘3’ = 2+1
 - Diyari *parrkulu* ‘3’ via compound reduction

- **Loans**: e.g., *kutyarra* ‘2’ into Proto-Nyulnyulan

- **Semantic shift**:
Etymological sources of numerals

- **Composition** (i.e., other numerals):
 - Wangkumara *parrkukurnu* ‘3’ = 2+1
 - Diyari *parrku* ‘3’ via compound reduction

- **Loans**: e.g., *kutyarra* ‘2’ into Proto-Nyulnyulan

- **Semantic shift**:
 - Diyari *mandu* ‘2’ < ‘pair’
Etymological sources of numerals

- **Composition** (i.e., other numerals):
 - Wangkumara *parrkukurnu* ‘3’ = 2+1
 - Diyari *parrkulu* ‘3’ via compound reduction

- **Loans**: e.g., *kutyarra* ‘2’ into Proto-Nyulnyulan

- **Semantic shift**:
 - Diyari *mandu* ‘2’ < ‘pair’
 - ‘one’ as *collective* (i.e. ‘together’) vs ‘one’ as *individuative* (i.e. ‘alone’)

Zentz & Bowern
LSA 2011: Australian Numerals
1 Introduction

2 Features of Australian numeral systems
 - Extent of system
 - Internal structure
 - Secondary meanings of numerals
 - Etymologies of numerals

3 Conclusions
What about other hunter-gatherer languages?
What about other hunter-gatherer languages?

Small numeral systems
What about other hunter-gatherer languages?

Small numeral systems

- Australian systems are larger than Amazonian hunter-gatherer systems, but smaller than the average agriculturalist ones in Amazonia.
What about other hunter-gatherer languages?

<table>
<thead>
<tr>
<th>Small numeral systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian systems are larger than Amazonian hunter-gatherer systems, but smaller than the average agriculturalist ones in Amazonia</td>
</tr>
<tr>
<td>California & Great Basin: Both hunter-gatherer and agriculturalist languages have larger systems</td>
</tr>
</tbody>
</table>
What about other hunter-gatherer languages?

Small numeral systems

- Australian systems are larger than Amazonian hunter-gatherer systems, but smaller than the average agriculturalist ones in Amazonia.
- California & Great Basin: Both hunter-gatherer and agriculturalist languages have larger systems.

Etymological sources
What about other hunter-gatherer languages?

Small numeral systems

- Australian systems are larger than Amazonian hunter-gatherer systems, but smaller than the average agriculturalist ones in Amazonia
- California & Great Basin: Both hunter-gatherer and agriculturalist languages have larger systems

Etymological sources

- Combination of numerals: found in all case study areas (though with differences in the details)
What about other hunter-gatherer languages?

Small numeral systems
- Australian systems are larger than Amazonian hunter-gatherer systems, but smaller than the average agriculturalist ones in Amazonia
- California & Great Basin: Both hunter-gatherer and agriculturalist languages have larger systems

Etymological sources
- Combination of numerals: found in all case study areas (though with differences in the details)
- Hand: found in all case study areas
What about other hunter-gatherer languages?

Small numeral systems
- Australian systems are larger than Amazonian hunter-gatherer systems, but smaller than the average agriculturalist ones in Amazonia.
- California & Great Basin: Both hunter-gatherer and agriculturalist languages have larger systems.

Etymological sources
- Combination of numerals: found in all case study areas (though with differences in the details).
- Hand: found in all case study areas.
- Kinship/sibling terms: only Amazonia (Epps 2006).
Australian numeral systems are uniformly small, which makes it difficult to answer the traditional questions of numeral typology, but there are parameters along which they differ.

May numerals be combined, and if so, how?

May numerals be used for inexact quantities?

To what level are numerals reconstructible?

What are the etymological sources for numerals?

We would like to encourage numeral typologists not to lay aside data from small systems, and for linguists working on languages with such systems to explore them.

One, two, three, many is by no means the end of the story.
Australian numeral systems are uniformly small, which makes it difficult to answer the traditional questions of numeral typology, but there are parameters along which they differ.
Conclusions

- Australian numeral systems are uniformly small, which makes it difficult to answer the traditional questions of numeral typology, but there are parameters along which they differ.
 - May numerals be combined, and if so, how?
 - May numerals be used for inexact quantities?
 - To what level are numerals reconstructible?
 - What are the etymological sources for numerals?
Australian numeral systems are uniformly small, which makes it difficult to answer the traditional questions of numeral typology, but there are parameters along which they differ.

- May numerals be combined, and if so, how?
- May numerals be used for inexact quantities?
- To what level are numerals reconstructible?
- What are the etymological sources for numerals?

We would like to encourage numeral typologists not to lay aside data from small systems, and for linguists working on languages with such systems to explore them.
Australian numeral systems are uniformly small, which makes it difficult to answer the traditional questions of numeral typology, but there are parameters along which they differ.

- May numerals be combined, and if so, how?
- May numerals be used for inexact quantities?
- To what level are numerals reconstructible?
- What are the etymological sources for numerals?

We would like to encourage numeral typologists not to lay aside data from small systems, and for linguists working on languages with such systems to explore them.

One, two, three, many is by no means the end of the story.
Acknowledgments

This work was funded by NSF grants BCS-844550 and BCS-902114

Participants in the project “Dynamics of Hunter-Gatherer Language Change”: Patience Epps, Russell Gray, Jane Hill, Keith Hunley, Jack Ives, Patrick McConvell, Catherine Sheard
References

