More challenging problems: Differentiating and integrating power series

Notes PDF
Introductory Problems

1. Find a power series y(x) = ∑n = 0anxn that satisfies y’ = y and y(0) = 1.

Answer

1. 1. The series is y(x) = 1 + x + x2/2! + x3/3! + … = ex.

Solution

 

2. Find a power series y(x) = ∑n = 0anxn that satisfies xy” + (1 – x)y’ – y = 0 and y(0) = 2.

Answer

1.  The series is y(x) = 2 + 2x + x2 + x3/3 + x4/(4⋅3) + x5/(5⋅4⋅3) +…

Solution

1. Differentiating y(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + … gives:                                                                y'(x) = a1 + a22x + a33x2 + a44x3 + a55x4 + …y”(x) = a22 + a33⋅2x + a44⋅3x2 + a55⋅4x3 + a66⋅5x4 +   Then:  xy'(x) = a1x + a22x2 + a33x3 + a44x4 + a55x5 + …xy”(x) = a22x + a33⋅2x2 + a44⋅3x3 + a55⋅4x4 + a66⋅5x5 + … Equating coefficients of like powers of x gives:                                                           xy”           y’ – xy’          -y         = 0                     gives                                                                           x0          0             a1 – 0          -a0        = 0                     a1 = a0                                                                      x1       2a2         2a2 – a1          -a1        = 0                   4a2 – 2a= 0, so a2 = a1/2                                         x2    3⋅2a3        3a3 – 2a2        -a2        = 0                   9a3 – 3a2 = 0, so a3 = a2/3                                         x3    4⋅3a4        4a4 – 3a3        -a3        = 0                 16a4 – 4a3 = 0, so a4 = a3/4

 

All the coefficients can be expressed in terms of a0, giving an = a0/n! and consequently:

y(x) = a0(1 + x + x2/2 + x3/3! + x4/4! + …) = a0ex.The condition y(0) = 2 implies a0 = 2.

 

3. Prove that on its domain, (1 – sin(x))-2 = 1 + 2sin(x) + 3sin2(x) + 4sin3(x) + …

Solution

 

4. By dividing the series, find the coefficients, through the cubic term, of (1 – x)/ex.

Answer

1. The series for (1 – x)/ex begins 1 – 2x + (3/2)x2 – (2/3)x3.

Solution

1. Mimic long division of polynomials.