Notes PDF
More Challenging Problems
1. Find ∫ sin(x/2) dx
Answer
1. -2 cos(x/2) + c
Solution
2. Find ∫ x2 cos(x3) dx
Answer
1. sin(x3) / 3
Solution
1. Substitute u = x3. This gives du = 3 x2 dx, and we get ∫ x2 cos(x3) dx = ∫ cos(u) / 3 du = sin(u) / 3 + c = sin(x3)/3
3. Find ∫ x / (1 + x2) dx
Answer
1. ln ( 1 + x2 ) / 2 + c
Solution
4. Find ∫ tan(x) dx
Answer
1. -ln[ cos(x) ] + c
Solution
1. tan(x) = sin(x) / cos(x). Here we substitute u = cos(x), which means that du = – sin(x) dx, and we get ∫ sin(x) / cos(x) dx = ∫ – 1 / u du = – ln(u) + c = – ln [ cos(x) ] + c Note: this is often listed as-ln [ cos(x) ] + c = ln [ 1 / cos(x) ] + c = ln [ sec(x) ] + c
5. Find ∫ cos3(x) sin(x) dx
Answer
1. – 1/4 cos4(x) + c
Solution
1. Substitute u = cos(x), then du = – sin(x), and we have ∫ cos3(x) sin(x) dx = ∫ – u3 du = – 1/4 u4 + c = – 1/4 cos4(x) + c