Complex numbers and Euler’s formula

Notes PDF                                     
More Challenging Problems

1. Evaluate (a)(2 + 3i) + (4 – 7i) (b) (2 + 3i) + (4 – 7i)

Answer

    1. 1. (a) 6 – 4i (b) -2 + 10i

 

2. Evaluate (2 + 3i)⋅(4 – 7i) (2 + 3i)2

Answer

    1. (a) 29 – 2i (b) -5 + 12i

 

3. Evaluate (2 + 3i)/(4 – 7i)

Answer

    1. -1/5 + (2/5)i

Solution

    1. (2 + 3i)/(4 – 7i) = (2 + 3i)/(4 – 7i) ⋅ (4 + 7i)/(4 + 7i) = (2 + 3i)⋅(4 + 7i) / (42 + 72) =                                (-13 + 26i)/65 = -1/5 + (2/5)i

 

4. Find the square roots of 9 – 9i.

Answer

    1. 3⋅21/4 (cos(3π/8) + i sin(3π/8) and -3 ⋅21/4 (cos(3π/8) + i sin(3π/8)

Solution

    1. 9 – 9i has modulus (92 + 92)1/2 = 9√2, and argument 3π/4. Then one square root has             modulus (9√2)1/2 = 3⋅21/4 and argument 3π/8, so is 3⋅21/4(cos(3π/8) + i sin(3π/8)) ≈                 1.365 + 3.296i. The other square root is -3⋅21/4(cos(3π/8) + i sin(3π/8)) ≈ -1.365 –                     3.296i.

 

5. Solve z2 = 9 – 9i.

Answer

    1. 3⋅21/4 (cos(3π/8) + i sin (3π/8)) and -3⋅21/4 (cos(3π/8) + i sin (3π/8)

Solution

    1. The solutions are z = square roots of 9 + 9i, solved in problem 4