Category Archives: Introductory Problems

Power Series: Using power series to sum numerical series

Notes PDF
More Challenging Problems

 

Sum these series.

1. 1 + 1/22 + 1/24 + 1/26 + 1/28 + …

Answer

1. The series sums to 4/3.

Solution

1. The powers of 2 in the denominators suggest trying x = 1/2. Then we see the numerical series is x = 1/2 substituted into 1 + x2 + x4 + x6 + x8 + … We recognize this as the series expansion for 1/(1 – x2). Then, 1 + 1/22 + 1/24 + 1/26 + 1/28 + … = 1/(1 – (1/2)2) = 4/3.

 

2. 2/3 + 4/33 + 6/35 + 8/37 + 10/39 + …

Answer

1. The series sums to 27/32.

Solution

1. The powers of 3 in the denominators suggest trying x = 1/3. Then we see the numerical series is x = 1/3 substituted into 2x + 4x3 + 6x5 + 8x7 + 10x9 + …The relation between the coefficient and the exponent of each term suggests viewing this as a derivative: 2x + 4x3 + 6x5 + 8x7 + 10x9 + … = (x2 + x4 + x6 + x8 + x10 + …)’  Of course, we can add any constant to the series being differentiated, without changing its derivative. Adding 1 gives a familiar series. 2x + 4x3 + 6x5 + 8x7 + 10x9 + … = (1 + x2 + x4 + x6 + x8 + x10 + …)’ = (1/(1 – x2))’ = 2x/(1 – x2)2 Substituting in x = 1/3, we find 2/3 + 4/33 + 6/35 + 8/37 + 10/39 + … = (2/3)/(1 – 1/32)2 = 27/32

 

3. 1 – 1/42 + 1/44 – 1/46 + 1/48 – …

Answer

1. The series sums to 16/17.

Solution

1. The powers of 4 in the denominators suggest trying x = 1/4. Then we see the numerical series is x = 1/4 substituted into 1 – x2 + x4 – x6 + x8 + …We recognize this as the series expansion for 1/(1 + x2). Then 1 – 1/42 + 1/44 – 1/46 + 1/48 – … = 1/(1 + 1/42) = 16/17.

 

4. 1 – 1/3 + 1/5 – 1/7 + 1/9 – 1/11 +

Answer

1. The series sums to π/4.

Solution

1. Here we have fewer clues; no obvious choice for x. But in order to view this as a power series evaluated at some x = a, then the numerical series should contain some number raised to different powers. With this assumption, the only choice for x is x = 1. But what powers should we use? Trying 1, x, x2, x3, … gives 1 – x/3 + x2/5 – x3/7 + x4/9 – x5/11 + …This doesn’t look like a familiar series. If we match the exponent of x to the denominator, then we might recognize this series as the integral of a familiar series.x – x3/3 + x5/5 – x7/7 + x9/9 – x11/11 + 2 + x4 – x6 + x8 – x10 + …)dx = ∫1/(1 + x2) dx= arctan(x). Substituting x = 1 we find: 1 – 1/3 + 1/5 – 1/7 + 1/9 – 1/11 + …= arctan(1) = π/4.

 

5. 3 – 32/3 + 33/5 – 34/7 + 35/9 – …

Answer

1. The series sums to π/√3.

Solution

1. The previous problem has the same set of denominators as this problem, which saw the exponent of x increasing by 2 between successive terms. The powers of 3 in the numerators suggest taking x = 3, but since the powers of 3 increase by 1 between successive terms of the series, maybe x = √3 is a better choice. Then the series has the form x2 – x4/3 + x6/5 – x8/7 + x10/9 – … This isn’t exactly a series we recognize, but it’s close. Try factoring out an x (NOT an x2, because the series from the previous problem, which looks pretty similar to this, starts with an x). x⋅(x – x3/3 + x5/5 – x7/7 + x9/9 – … ) = x⋅arctan(x) where we’ve used the arctan(x) series from the previous problem. Substituting x = √3 we see 3 – 32/3 + 33/5 – 34/7 + 35/9 – … = (√3)⋅arctan(√3) = (√3)⋅(π/3) = π/√3.

 

Power Series: Differentiating and integrating power series

Notes PDF
More Challenging Problems 

1. Find the Taylor series, expanded about x = 0, for f(x) = x⋅cos(x2).

Answer

1. The series is x – x5/2 + x9/4! – x13/6! + … .

Solution

1. First, recognize that x⋅cos(x2) is 1/2 the derivative of sin(x2). Substituting u= x2 in the series for sin(u), we find sin(x2)= x2 – x6/3! + x10/5! – x14/7! + … Then 2x⋅cos(x2) = (sin(x2))’= (x2 – x6/3! + x10/5! – x14/7! + …)’ = 2x – 6x5/3! + 10x9/5! – 14x13/7! + … and so x⋅cos(x2)= x – x5/2 + x9/4! – x13/6! + … Alternately, we could substitute x2 for x in the series expansion of cos(x), them multiply that series by x.

 

2. Find the Taylor series, expanded about x = 0, for f(x) = ex + x2

Answer

1. The series is 1 + x + 3x2/2 + 7x3/6 + 25x4/24 + 27x5/40 + 331x6/720 +…

Solution

1. Substitute u = x + x2 in the series eu = 1 + u + u2/2! + u3/3! + u4/4! + … obtaining ex + x2 = 1 + (x + x2) + (x + x2)2/2! + (x + x2)3/3! + (x + x2)4/4! + …= 1 + (x + x2) + (x2 + 2x3 + x4)/2! + (x3 + 3x4 + 3x5 + x6)/3! + (x4 + 4x5 + 6x6 + 4x7 + x8)/4! + …Now group together like powers of x. ex + x2 = 1 + x + (1 + 1/2!)x2 + (1 + 1/3!)x3 + (1/2! + 3/3! + 1/4!)x4 + (3/3! + 4/4! + 1/5!)x5 + … = 1 + x + 3x2/2 + 7x3/6 + 25x4/24 + 27x5/40 + 331x6/720 + …

 

3. Find the Taylor series, expanded about x = 0, for f(x) = 1/(1 – x)3.

Answer

1. The series is 1 + 3x + 6×2 + 10×3 + 15×4 + 21×5 + …

Solution

1.  First, recognize that 1/(1 – x)3 is 1/2 the second derivative of 1/(1 – x). Recall the series for 1/(1 – x) is 1/(1 – x) = 1 + x + x2 + x3 + x4 + x5 + … Then (1/(1 – x))’ = 1 + 2x + 3x2 + 4x3 + 5x4 + 6x5 + … (1/(1 – x))” = 2 + 3⋅2x + 4⋅3x2 + 5⋅4x3 + 6⋅5x4 + 7⋅6x5 + …Then the series for 1/(1 – x)3 is:                1 + (3⋅2/2)x + (4⋅3/2)x2 + (5⋅4/2)x3 + (6⋅5/2)x4 + (7⋅6/2)x5 + …= 1 + 3x + 6x2 + 10x3 + 15x4 + 21x5 + …

 

4. Find the Taylor series, expanded about x = 0, for cos(x)⋅sin(x). 

Answer

1. The series is x – 2x3/3 + 2x5/15 – 4x7/315 + 2x9/2835 – 4x11/155925 + …

Solution

1. Multiply the series for cos(x) by the series for sin(x) and group together terms having like powers of x. cos(x)⋅sin(x) = (1 – x2/2! + x4/4! – x6/6! + x8/8! – …)⋅(x – x3/3! + x5/5! – x7/7! + …) = x – (1/3! + 1/2!)x3 + (1/5! + (1/2!)⋅(1/3!) + 1/4!)x5 – (1/7! + (1/2!)⋅(1/5!) + (1/4!)⋅(1/3!) + 1/6!)x7 – (1/9! + (1/2!)⋅(1/7!) + (1/4!)⋅(1/5!) + (1/6!)⋅(1/3!) + 1/8!)x9 + ..

 

5. Find the Taylor series, expanded about x = 0, for ∫1/(1 – x5) dx. 

Answer

1. The series is x + x6/6 + x11/11 + x16/16 + x21/21 + x26/26 + …

Solution

1.  The series for 1/(1 – x5) can be found by substituting u = x5 into the series for 1/(1 – u). 1/(1 – x5) = 1 + x5 + (x5)2 + (x5)3 + (x5)4 + (x5)5 + …= 1 + x5 + x10 + x15 + x20 + x25 + …Then the integral ∫1/(1 – x5) dx has series obtained by integrating this, so ∫1/(1 – x5) dx = x + x6/6 + x11/11 + x16/16 + x21/21 + x26/26 + …

 

Power Series: Taylor’s theorem

Notes PDF
More Challenging Problems

1. Find the Taylor series, expanded about x = 0, for f(x) = 1/(1 + x)3

 

Answer

1.  The series is ∑n=0anxn,where an = (-1)n(n+1)(n+2)/2

Solution

1. For f(x) = 1/(1 + x)3 we compute some derivatives and seek a pattern. f'(x)= -3/(1 + x)4 f”(x)= 3⋅4/(1 + x)5 f”'(x)= -3⋅4⋅5/(1 + x)6 and so on. Evaluating the function and its derivatives at x = 0 we find f(0)= 1 f'(0)= -3 f”(0)= 3⋅4 f”'(0)= -3⋅4⋅5 and so on. Then the coefficients of the Taylor series, f(n)(0)/n!, are f(0) = 1 f'(0)/1! = -3 f”(0)/2! = 3⋅4/2! = 3⋅4/2 f”'(0)/3! = -3⋅4⋅5/3! = – 4⋅5/2 We need a few more terms to find the pattern. f(4)(0)/4! = 3⋅4⋅5⋅6/4! = 5⋅6/2 f(5)(0)/5! = -3⋅4⋅5⋅6⋅7/5! = -6⋅7/2 Now we see it: f(n)(0)/n! = (-1)n(n+1)(n+2)/2

 

 

2. Find the Taylor series for f(x) = 1 + x – x3, expanded about x = 1.

 

Answer

1. The expansion is f(x)= 1 -2(x-1) -3(x-1)2 – (x-1)3.

Solution

1. We compute the derivatives. Only a few are nonzero, so we need to expend much energy looking for the pattern. f(1)= 1 f'(1)= -2 f”(1)= -6 f”'(x)= -6 f(n)(x) = 0 for all n > 3. Then the Taylor series is f(x) = 1 – (2/1!)(x-1) – (6/2!)(x-1)2 – (6/3!)(x – 1)3 = 1 -2(x-1) -3(x-1)2 – (x-1)3

 

 

3. Without computing any derivatives, find the Taylor series, expanded about x = 0, for x3ex

 

Answer

1. The series is x3 + x4 + x5/2! + x6/3! + x7/4! + … + xn+3/n! + …

Solution

1. Recall the Taylor series for ex= 1 + x + x2/2! + x3/3! + x4/4! + … Multiplying by x3 raises all the exponents by 3: x3ex= x3 + x4 + x5/2! + x6/3! + x7/4! + … + xn+3/n! + …

 

 

4. Without computing any derivatives, find the Taylor series, expanded about x = 0, for sin2(x). Hint: trigonometric identities.

 

Answer

1. sin2(x)= -x2 + 23x4/4! – 25x6/6! + …

Solution

1. Recall sin2(x) = (1 – cos(2x))/2. The Taylor series for cos(2x) is cos(2x)= 1 – (2x)2/2! + (2x)4/4! – (2x)6/6! + ….So 1 – cos(2x) has series expansion 1 – cos(2x)= -22x2/2! + 24x4/4! – 26x6/6! + …and we find sin2(x)= -x2 + 23x4/4! – 25x6/6! + …

 

 

5. Evaluate the limit limx → 0(sin(x) – x)/x3. Use Taylor series, not l’Hôpital’s rule.

 

Answer

1. The limit is -1/6.

Solution

1. Substitute in the Taylor series for sin(x), obtaining sin(x) – x = (x -x3/3! + x5/5! – …) – x= -x3/3! + x5/5! – … and so (sin(x) – x)/x3 = -1/3! + x2/5! – … where all the omitted terms have powers of x higher than 2, specifically, x4, x6, x8 and so on. As x → 0, only the -1/3! remains.

 

 

 

 

 

Power Series: The radius and interval of convergence

Notes PDF
More Challenging Problems

Find the radius and interval of convergence of these power series.

1. ∑n=1xn/√n

Answer

1. The radius of convergence is 1, the interval of convergence is [-1,1).

Solution

1. Apply the Ratio Test limn → ∞|(xn+1/√(n+1))/(xn/√n)| = limn → ∞ |x|⋅√(n/(n+1)) = |x| By the Ratio Test, the series converges for |x| < 1, that is, -1 < x < 1. The radius of convergence is 1. At the left endpoint, the series becomes ∑n=1(-1)n/√n. This converges by the Alternating Series Test. At the right endpoint, the series becomes ∑n=11/√n. This is a p-series with p = 1/2, so diverges. The interval of convergence is [-1,1).

 

2. ∑n=1(x-1)n/(n 5n)

Answer

1. The radius of convergence is 5, the interval of convergence is [-4,6).

Solution

1. Apply the Ratio Test limn → ∞|((x-1)n+1/((n+1)5n+1) / ((x-1)n/(n 5n)| = limn → ∞ |(x-1)n+1/(x-1)n|⋅(n/(n+1))⋅(5n/5n+1) = |x-1|/5 By the Ratio Test, the series converges for |x-1|/5 < 1, that is for -5 < x-1 < 5, or -4 < x < 6. The radius of convergence is 5. At the left endpoint the series becomes ∑n=1(-5)n/(n 5n) = ∑n=1(-1)n/n convergent by the Alternating Series Test. At the right endpoint the series becomes ∑n=1(5)n/(n 5n)= ∑n=1 1/n This is the harmonic series, hence divergent. The interval of convergence is [-4, 6).

 

3. ∑n=2(-1)nxn/(2nln(n))

Answer

1. The radius of convergence is 2, the interval of convergence is (-2,2].

Solution

1. Apply the Ratio Test limn → ∞|((-1)n+1xn+1)/(2n+1ln(n+1)) / ((-1)nxn)/2nln(n))| = limn → ∞ |-(xn+1/xn)|⋅(2n/2n+1)⋅(ln(n)/ln(n+1)) = |-x|/2 where limn → ∞ln(n)/ln(n+1) = 1 is obtained by applying l’Hôpital’s rule to limx → ∞ln(x)/ln(x+1) By the Ratio Test, the series converges for |-x|/2 < 1, that is, for -2 < x < 2. The radius of convergence is 2. At the left endpoint, the series becomes ∑n=2(-1)n(-2)n/(2nln(n))= ∑n=2 2n/(2n ln(n))) = ∑n=21/ln(n) Now ln(n) < n, so 1/ln(n) > 1/n and the series diverges by comparison with the harmonic series. At the right endpoint, the series becomes ∑n=2∞(-1)n2n/(2nln(n)) = ∑n=2 (-1)n/ln(n) converging by the Alternating Series Test. The interval of convergence is (-2,2].

 

4. ∑n=1(3x + 1)n/n2

Answer

1. The radius of convergence is 1/3, the interval of convergence is [-2/3, 0].

Solution

1. Apply the Ratio Test limn → ∞|((3x+1)n+1/(n+1)2) / ((3x+1)n/n2)|= limn → ∞ |(3x+1)n+1/(3x+1)n|⋅(n2/(n+1)2)= |3x+1| By the Ratio Test, the series converges for |3x+1| < 1, that is, -1 < 3x+1 < 1, so -2 < 3x < 0, giving -2/3 < x < 0. The radius of convergence is 1/3. At the left endpoint, the series becomes ∑n=1 (-1)n/n2 convergent by the Alternating Series Test. At the right endpoint, the series becomes ∑n=1 1n/n2 convergent, being a p-series with p= 2. The interval of convergence is [-2/3, 0].

 

5. ∑n=1xn/nn

Answer

1. The radius of convergence is ∞, the interval of convergence is (-∞, ∞).

Solution

1. Apply the Ratio Test: limn → ∞|(xn+1/(n+1)n+1)/(xn/nn)| = limn → ∞ |xn+1/xn|⋅((nn)/((n+1)n+1)) = limn → ∞|x|⋅(n/(n+1))n⋅(1/(n+1)) = 0 for all x Here we have used limn → ∞(1 + 1/n)n= e, we see limn → ∞(n/(n+1))n= 1/e to be sure we needn’t be concerned with the factor (n/(n+1))n in the limit. By the Ratio Test, this series converges for al x, so the radius of convergence is ∞ and the interval of convergence is (-∞, ∞).

 

 

Power Series: Geometric series

Notes PDF
More Challenging Problems

1. Find a power series for 1/(x2 – 1)

Answer

1. The series is -1 – x2 – x4 – x6 – x8-…

Solution

1. First, note that 1/(x2 – 1)= -1/(1 – x2). Now apply the series of Example 3 to conclude 1/(x2 – 1)= -(1 + x2 + x4 + x6 + x8 + …)

 

2. From the power series for 1/(x + 1) and for 1/(x – 1), use partial fractions to find a power series for 1/(x2 – 1). What assumption are you making in this approach?

Answer

    1. Adding the series for (1/2)(1/(x+1)) and for (1/2)(1/(x-1)), and rearranging the terms, we           obtain the series from problem 1.

Solution

    1. From Example 1 we know a series for 1/(1 + x) is 1 – x + x2 – x3 + x4– … The series for 1/(x – 1)= -(1/(1 – x)) is -1 – x – x2 – x3 – x4 – … Next, note that using a partial fractions expansion we have 1/(x2 – 1) = (1/2)(1/(x-1)) – (1/2)(1/(x+1)) Assuming we can add the series and rearrange them in any way we wish (This will be addressed in the next section), we find 1/(x2 – 1)= (1/2)(-1 – x – x2 – x3 – x4 – …) – (1/2)(1 – x + x2 – x3 + x4 – …) = -1 – x2 – x4; – x2 – … agreeing with       the solution to problem 1.

 

3. Find a power series for 1/(x2 + 5x + 6). On what interval is this series valid?

Answer

    1. The series is (1/2 – 1/3) – (1/4 – 1/9)x + (1/8 – 1/27)x2 – (1/16 – 1/81)x3 + …This series is valid                for |x| < 2.

Solution

    1. Using the method of partial fractions, we find: 1/(x2 + 5x + 6) = 1/((x + 2)(x + 3)) = 1/(x + 2) – 1/(x + 3). Using the method of Example 4 we find these power series: 1/(2 + x) = 1/(2(1 + x/2)) = (1/2)(1 – x/2 + x2/4 – x3/8 + x4/16 – …) 1/(3 + x) = 1/(3(1 + x/3)) = (1/3) (1 – x/3 + x2/9 – x3/27 + x4/81 – …) Subtracting these we find the series for 1/(x2 + 5x + 6) is: (1/2 – 1/3) – (1/4 –         1/9)x + (1/8 – 1/27)x2 – (1/16 – 1/81)x3 + … The series for 1/(2 + x) is valid for: |x/2| < 1, that is, |x| < 2. The series for 1/(3 + x) is valid for |x/3| < 1, that is, |x| < 3. Both expansions are valid for the intersection of these intervals, |x| < 2.

 

4. Find a power series for (2x + 5)/(x2 + 5x + 6). On what interval is this series valid?

Answer

    1. The series is (1/2 + 1/3) – (1/4 + 1/9)x + (1/8 + 1/27)x2 – (1/16 + 1/81)x3 + …This expansion is            valid for |x| < 2.

Solution

    1. Using the method of partial fractions, we find (2x + 5)/(x2 + 5x + 6) = (2x + 5)/((x + 2)(x + 3))= 1/(x + 2) + 1/(x + 3) Recalling the series for 1/(2 + x) and 1/(3 + x) from problem 3, we find the series for (2x + 5)/(x2 + 5x + 6) is the sum of these (1/2 + 1/3) – (1/4 + 1/9)x + (1/8 + 1/27)x2 – (1/16 + 1/81)x3 + … As in problem 3, this expansion is valid for |x| < 2.

 

5. Using -1/x = 1/(1 – (x+1)), find a power series for -1/x. On what interval is this series valid?

Answer

    1. The series is 1 + (x + 1) + (x + 1)2 + (x + 1)3 + (x + 1)4 + … The series is valid for -2 < x < 0.

Solution

    1. The expansion for 1/(1 – (x + 1)) is 1 + (x + 1) + (x + 1)2 + (x + 1)3 + (x + 1)4 + … This converges          for |x + 1| < 1. That is, -1 < x + 1 < 1, or -2 < x < 0

 

 

More Challenging Problems: The integral test

Notes PDF
Introductory Problems 

1. (a) recalling that 1x (1/t) dt = ln(x), use the ideas of the proof of the integral test to  show ln(n+1) ≤ 1 + 1/2 + 1/3 + … + 1/n ≤ 1 + ln(n)

Solution

    1. Taking n = 4 as an example, the sum of the areas of the rectangles in the figure below is               1+ 1/2 + 1/3 + 1/4. Certainly, this is larger than the area under the curve y = 1/x between x           = 1 and x = n+1. Consequently,

 

                          ln(n+1) ≤ 1 + 1/2 + 1/3 + … + 1/n.    (A)

On the other hand, recalling we’re taking n = 4, the next picture shows that 1/2 + 1/3 + … + 1/n ≤ ln(n) and consequently,

 

                          1 + 1/2 + 1/3 + … + 1/n ≤ 1 + ln(n)    (B)

 

Combining inequalities (A) and (B) we see ln(n+1) ≤ 1 + 1/2 + 1/3 + … + 1/n ≤ 1 + ln(n)

 

1. (b) Show how slowly the harmonic series diverges by finding upper bounds                                            for n=1N1/n for N = 1,000, for N = 1,000,000, for N = 1,000,000,000, and for N =                            1,000,000,000,000.

Answer

    1. Upper bounds are:                                                                                                                                         N:                      upper bound                                                                                                                           1,000:                                7.91                                                                                                                         1,000,000:                      14.82                                                                                                                         1,000,000,000:               21.73                                                                                                                         1,000,000,000,000:        28.64

Solution

    1. Use the upper bound 1 + 1/2 + 1/3 + … + 1/N ≤ 1 + ln(N) to establish the upper bounds.                 N:                                      1 + ln(N)                                                                                                                   1,000:                                7.90776                                                                                                                   1,000,000:                         14.8155                                                                                                                   1,000,000,000:                  21.7233                                                                                                                 1,000,000,000,000:             28.631

 

2. Suppose {an} is a decreasing sequence of positive terms with limn → ∞an= 0. Use ideas in the proof of the integral test to show that ∑n=1∞an converges if and only if ∑n=1()2na2n converges.

Solution

1. Representing each term an as the area of a rectangle with base 1 and height an, we see: 

 

 

That is, a1 + a2 + a3 + a4 + a5 + a6 + a7 + …= a1 + (a2 + a3) + (a4 + a5 + a6+ a7) + … ≤ a1 + 2a2 + 4a4 + … From this we see ∑an ≤ ∑2na2n (A) where the second series starts with n = 0. On the other hand, by looking at a similar picture we see that the series (starting from n = 0) ∑ 2na2n= a1 + a2 + a2 + a4 + a4 + a4 + a4 + a8 + a8 + a8 + a8 + … = (a1 + a2) + (a2 + a4) + (a4 + a4) + (a4 + a8) + (a8 + a8) + a8 + … ≤ 2a1 + 2a2 + 2a3 + 2a4 + 2a5 + … That is, ∑2na2n ≤ 2∑an (B) Thinking of the area interpretations of these series, from (A) we see that if ∑an diverges, then ∑2na2n diverges. From (B) we see that if ∑an converges, then ∑2na2n converges. From (A) we see that if ∑2na2n converges then ∑an converges. From (B) we see that if ∑2na2n diverges then ∑an diverges.

 

3.Does the series ∑n=11/(n ln(n) ln(ln(n))) converge or diverge?

Answer

    1. The series diverges.

Solution

    1. First, for x ≥ 3, the function f(x) = 1/(x ln(x) ln(ln(x))) is decreasing to 0, so the terms an= f(n)           satisfy the conditions of exercise 2.Then                                                                                                                2na2n= 2n/(2nln(2n)ln(ln(2n))) = 1/(n ln(2) (ln(n) + ln(ln(2)))) Now ln(ln(2)) < 0 so, 1/(n                            (ln(n) +  ln(ln(2)))) > 1/(n ln(n))                                                                                                             From introductory exercise 4, we know ∑ 1/(n ln(n)) diverges, so ∑ 1/(n ln(2) ln(n)) diverges.           Each term of the series ∑1/(n ln(2) (ln(n) + ln(ln(2)))) is larger than the corresponding term of         the series ∑ 1/(n ln(2) ln(n)), so the former series must diverge. We elaborate on this type of         argument in the Comparison Test section.

 

 

Numerical Sequences and Series: The ratio and root tests

Notes PDF
More Challenging Problems

Determine in the series a1 + a2 + a3 + … converges or diverges.

 

1. an = n2/3n

Answer

1. The series converges.

Solution

1. Use the Ratio test:                                                                                                                                   limn → ∞an+1/an                                                                                                                                                                                                = limn → ∞((n+1)2/3n+1)/ (n2/3n)                                                                                                                    = limn → ∞((n+1)2/n2)⋅(3n/3n+1)                                                                                                                      = limn → ∞((n+1)/n)2⋅(1/3)= 1/3                                                                                                                   So the series converges by the ratio test.

 

2. an= 3n/nn

Answer

1. The series converges.

Solution

1. The exponent n suggests the Root Test:                                                                                           limn → ∞(an)1/n                                                                                                                                                = limn → ∞(3n/nn)1/n                                                                                                                                           = limn → ∞ 3/n = 0                                                                                                                                           So the series converges by the Root Test.

 

3. an = n/(ln(n)n)

Answer

1. The series converges.

Solution

1. The exponent n in the denominator suggests the Root Test:                                                           limn → ∞(an)1/n                                                                                                                                             = limn → ∞(n/(ln(n)n))1/n                                                                                                                                    = limn → ∞ (n1/n)/ln(n)                                                                                                                                     For the n1/n factor, write y = x1/x, so ln(y) = ln(x)/x. Applying l’Hôspital’s rule, we see ln(y) → 0, so y → 1. Then with the ln(n) in the denominator, we see limn → ∞(an)1/n= 0, so the series converges by the Root Test.

 

4. an = (2n/(n + 1))n

Answer

1. The series diverges.

Solution

1. The exponent n suggests the Root Test:                                                                                           limn → ∞(an)1/n                                                                                                                                                   = limn → ∞((2n/(n + 1))n)1/n                                                                                                                             = limn → ∞ 2n/(n + 1) = 2                                                                                                                              So the series diverges by the Root Test.

 

5. an= n!/en

Answer

1. The series diverges.

Solution

1. he factorial suggests we try the Ratio Test:                                                                                       limn → ∞an+1/an                                                                                                                                                                                                = limn → ∞((n+1)!/en+1)/ (n!/en)                                                                                                                      = limn → ∞((n+1)!/n!)⋅(en/en+1)                                                                                                                        = limn → ∞ (n+1)/e So the ratio an+1/an → ∞ as n → ∞ and we see the series diverges by the Ratio Test.

 

6. an = n!/nn

Answer

1. The series converges.

Solution

1. Here we have both a factorial and an exponent n. In case you were thinking that factorial always means Ratio Test and that exponent n always means Root Test, this problem shows that rule cannot be applied to all series. Our intuition suggests we won’t have much luck with roots of factorials, but maybe we can handle ratios of exponents. So let’s try the Ratio Test:                 limn → ∞an+1/an                                                                                                                                                = limn → ∞((n+1)!/(n+1)n+1) / (n!/nn)                                                                                                               = limn → ∞((n+1)!/n!)⋅(nn/(n+1)n+1)                                                                                                                 = limn → ∞(n+1)⋅(nn/(n+1)n+1)                                                                                                                        = limn → ∞nn/(n+1)n                                                                                                                                        = limn → ∞(n/(n+1))n                                                                                                                              Recalling that: limn → ∞(1 + 1/n)n = we see: limn → ∞an+1/an= 1/e < 1 and so the series converges by the Ratio Test.

 

 

Numerical Sequences and Series: The alternating series test

Notes PDF
More Challenging Problems

In problems 1 – 4 determine if the series converges absolutely, converges conditionally, or diverges.

 

1. 1. 1 – 1/3 + 1/9 – 1/27 + 1/81 – …

Answer

1. The series converges absolutely.

Solution

1. To test absolute convergence, we test the series: 1 + |-1/3| + 1/9 + |-1/27| + 1/81 + … the geometric series with r = 1/3. This series converges, so the alternating series converges absolutely.

 

2. an= (-1)nn/(n2 + 2)

Answer

1. The series converges conditionally.

Solution

1. To test absolute convergence, test the series with terms |an| = n/(n2 + 2). The terms look like n/n2 = 1/n, which diverges. Because n/(n2 + 2) < 1/n, we cannot apply the Comparison Test. Instead, apply the Limit Comparison Test. limn → ∞ n/(n2 + 2)/(1/n)= limn → ∞ 1/(1 + 2/n2) = 1 Consequently, the series with terms |an| diverges. To test conditional convergence, we apply the Alternating Series Test. Consider the function f(x)= x/(x2 + 2) and compute f'(x)= (2 – x2)/(x2 + 2)2. Because f'(x) is negative for x > √2, the terms |an| are eventually decreasing. Also, limx → ∞ f(x)= 0, so limn → ∞,/sub> an= 0. Then by the Alternating Series Test, the series converges. Because it does not converge absolutely, the series converges conditionally.

 

3. an = (-1)n(n2 – 2n + 3)/(n2 + 2n + 5)

Answer

1. The series diverges.

Solution

1. The numerator and denominator have the same highest power of n, so apply the nth term test limn → ∞(n2 – 2n + 3)/(n2 + 2n + 5) = limn → ∞(1 – 2/n + 3/n2)/(1 + 2/n + 5/n2)= 1 Because the terms do not go to 0, the series diverges.

 

4. an= cos(n)/n2

Answer

1. The series converges absolutely.

Solution

1. Note |an| ≤ 1/n2, a p-series with p= 2, converging by the Integral Test. Because the series with term |an| converges, the original series converges absolutely.

 

5. For which p does the alternating p-series 1 – 1/2p + 1/3p – 1/4p + … converge absolutely, converge conditionally, or diverge?

Answer

1. Converges absolutely for p > 1, converges conditionally for 0 < p ≤ 1, and diverges for p ≤ 0.

Solution

1. To test absolute convergence, we test the series: 1 + |-1/2p| + |1/3p| + |-1/4p| + … the regular p-series. From the Integral Test, we know the p-series converges for p > 1 and diverges for p ≤ 1. Consequently, the alternating p-series converges absolutely for p > 1. For 0 < p ≤ 1, apply the Alternating Series Test. For f(x)= 1/xp, we find f'(x)= -p/xp+1 so f(x) is decreasing. Also, limn → ∞ 1/np= 0 so the alternating p-series converges. Because the series does not converge absolutely in this range of p-values, the series converges conditionally. For p ≤ 0, the series diverges by the nth term test.