ECOLOGICAL IMPACTS OF FOREST DISTURBANCE ON RING-TAILED LEMURS (*LEMUR CATTA*) IN THE BEZA-MAHAFALY SPECIAL RESERVE REGION: IMPLICATIONS FOR CONSERVATION IN AN ALTERED LANDSCAPE.

by

Dana Carrie Whitelaw B.A., University of Montana, 1997 M.A., University of Colorado, 2001

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirement for the degree of

Doctor of Philosophy

Department of Anthropology

2010

UMI Number: 3433354

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI 3433354 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346 This thesis entitled: Ecological Impacts of Forest Disturbance on Ring-tailed Lemurs (*Lemur catta*) in the Beza-Mahafaly Special Reserve Region: Implications for Conservation in an Altered Landscape written by Dana Carrie Whitelaw has been approved for the Department of Anthropology

Dr. Michelle L. Sauther, Committee Chair

Dr. Darna Dufour, Committee Member

Dr. Bert Covert, Committee Member

Dr. Matt Sponheimer, Committee Member

Dr. David Armstrong, Committee Member

Date_____

The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.

Whitelaw, Dana Carrie (Ph. D. Anthropology)

Ecological Impacts of Forest Disturbance on Ring-tailed Lemurs (*Lemur catta*) in the Beza-Mahafaly Special Reserve Region: Implications for Conservation in an Altered Landscape.

Thesis directed by Associate Professor Michelle L. Sauther

Forest disturbance, both natural and anthropogenic, has been recognized as a severe threat to primate populations on a global scale. Moreover, primates tend to vary, between species and between sites, in their tolerance and response to disturbances. Perhaps because of this variability, the effects of ecological perturbations on primates remain relatively poorly understood. Understanding disturbance effects and the ecological variables that are particularly potent for primates will provide sound data for effective conservation management. In this dissertation, I examine the effects of anthropogenic disturbance and a destructive cyclone on the ecology and behavior of the ring-tailed lemur (Lemur catta) at Beza Mahafaly Special Reserve in southwestern Madagascar. I present data from four study groups (two in the protected Reserve and two in anthropogenically disturbed, unprotected habitats). Cyclone Ernest affected this region when it made landfall in January of 2005, seven months prior to the beginning of this study. These natural and anthropogenic disturbances have altered forest structure and phenology. Groups inside the Reserve tend to eat more terrestrial herbs and vine leaves. Additionally, Reserve Groups also rely on a fewer number of species for the majority of their diet. It appears that in more marginal habitats, L. catta is able to diversify its diet and exploit foods that might not be their primary choice. Non-Reserve Groups also inhabited smaller home ranges, but had higher daily path lengths than groups residing in the Reserve. Additionally, Non-Reserve Groups utilize open canopy areas and habitats with higher degrees of disturbance to a

greater extent than Reserve Groups. Non-Reserve Groups spend more of their active time both feeding and traveling than groups inside the Reserve. Non-Reserve Groups devoted less of their time to resting compared to Reserve Groups. Groups in unprotected habitats have greatly reduced group cohesion, lower rates of grooming, and elevated levels of aggression. Preliminary data show higher rates of injury and mortality for groups living outside of the protected forest. Anthropogenic habitat alterations, coupled with stochastic changes from tropical storms, have changed the landscape both in and around BMSR and contributed to survival challenges for *L. catta* in the area.

This dissertation is dedicated to Jason and Aidan – for living this project with me and finding the strength to help me through it. And for Aamion, who will also know the wonder of Madagascar and its lemurs.

ACKNOWLEDGMENTS

I have been lucky, fortunate, and sometimes undeserving to have the biological anthropology faculty team at the University of Colorado at Boulder supporting, teaching, guiding, and prodding me along. To thank them appropriately, I need to step back a few moments in time to my first introduction to anthropology. I was 18 and working for a few weeks at a refugee camp in Thailand. I met a woman who was doing interviews, and focusing on mother/infant care in the camp. I was enthralled – who was this woman and what kind of job lets you embed yourself in a culture, learn the language, and then apply your work to help people? Her answer was simple, "I'm an anthropologist." Enough said. That fall, I took my first anthropology class and was hooked. I was drawn to anthropology's holistic look at biology, humanity, culture, and evolution. My path to focusing on primates was circuitous. Starting with my first field job living in a monastery with Buddhist monks in Indonesia, to digging up hominid fossils near Lake Turkana, I found myself shying away from directly engaging with people and needing something more dynamic than a toothbrush scraping away dirt on a fossil. One day, as I was pulling out my fiftieth ostrich eggshell bead of the day next to Lake Turkana, a troop of baboons sauntered past. That's the ticket, I thought - extant primates. This circuitous route has been my foundation to truly appreciating anthropology's multifaceted, multivariable approach to examining the natural world, and the interplay between humans and earth's natural history. My faculty support at CU has built on this foundation because they are all true anthropologists and scholars- while they are laser focused on the intricacies of their own research, they also fundamentally understand, and speak eloquently to, the larger picture, the holistic perspective and anthropological paradigm that is essential to true anthropology. Culture, biology, evolution, history, are all part of their anti-myopic views of the world. This perspective is invaluable to the

vi

students they reach every day in lecture, their graduate students, and the world they reach through their research. My committee, Dr. Covert, Dr. Dufour, Dr. Sponheimer, and my advisor, Dr. Sauther, are each true anthropologists, and I am indebted to them for instilling this quality in my own anthropological perspective and being able to apply it beyond the academic world. Dr. Armstrong, an exceptional teacher and source of knowledge, was instrumental in my training to placing primates within the wider context of mammals and the natural world, and asking the very important question, "why is a mammal?". Thank you for working with me over my graduate career and participating in my committee.

Dr. Michelle Sauther first introduced me to Madagascar and its lemurs. I remember standing next to her as dusk approached and looking up at a troop of brown lemurs scurrying through the canopy covering the red road we were traveling on. Our next sighting was a group of sifakas vertically clinging and leaping along the Mangoky river – I was hooked. I am indebted to Michelle for spending the time to coax the scientist in me along, sculpt my ideas into hypotheses, and guide me in crafting my project. She is a gifted scientist, teacher, mentor, and friend. I hope to take her perspective and channel it into my own niche. I'm not sure either of us knew how much of life happens while we are in graduate school, or how much the advisor is critical to the momentum of motivation: She flawlessly rose to the occasion and has never doubted my ability to achieve my goals. I have always been able to rely on her for support, friendship, sound judgement, and inspiration – even from far away. I admire her dedication to BMSR and firmly believe that sound conservation comes from passionate individuals who invest years in understanding the dynamics of their forests; The ring-tailed lemurs at Beza are lucky to have Michelle.

vii

This project would not have been possible without the financial support from the National Science Foundation, Margot Marsh Biodiversity Foundation, Primate Conservation Inc., and the Natural History Museum at the University of Colorado. A special thanks goes to Noel Rowe at PCI for giving me my first grant during my MA project and continuing to support my work. My fieldwork in Madagascar was made possible by the Département des Eaux et Forêts, Ecole Superieur des Sciences Agronomiques, Université d'Antananarivo and the National Association for the Management of Protected Areas in Madagascar (ANGAP) for their support and permissions. I am very grateful to Joel Ratsirarson, Randrianarisoa Jeannicq, Ibrahim Antho Jacky Youssouf, Elahavelo, and the BMSR Mahafaly Ecological Monitoring Team. I am especially grateful to De La Prairie and Clara for helping me and my family make daily life possible with plenty of laughter along the way.

I also thank Sophie Osbourn and Dr. Larissa Swedell who gave me my first field research positions with the American Dipper of the Bitteroot Range in Montana and the Hamadryas Baboon of Awash National Park in Ethiopia, respectively. Both of these determined women showed me the hardships, thrill, laughter and the magic of fieldwork and I respect them endlessly for their attention to detail and for taking me along – thank you. These experiences propelled me into this project.

During my fieldwork, several important people helped me with my research, and contributed to making daily life easier and full of tremendous memories. Hallie Jensen (now St. Onge) came on this wonderful adventure with my family and me and rose to the occasion every day helping me run after our 2-year old, collect data, search for hard to find lemurs, and is a great friend. James Loudon - fellow graduate student, primatologist, and all around great guy – helped

viii

make a very long year in the field tremendously rich with laughter, conversation, music, and friendship. James is a true friend, and I am lucky to count him as one of mine.

Several people helped make the writing process move forward as a I took a position at a natural and cultural history museum before I had finished writing, and I thank them for their patience and motivation. Paul Thoma spent countless hours with me and my statistics - always with a helpful spirit and timely responses: Thank you for repeatedly explaining the same concepts. Janeanne Upp believed in me, motivated me, and has given me tremendous opportunities to apply anthropology in the museum world: thank you.

My parents, Eloise and Ed, have been influential forces in helping me explore the world and follow my passion. And, to this day, they are still excited about every detail of these endeavors. Their sense of adventure and interest in the natural world has inspired me to pursue this path. Moreover, their unfailing support of every decision (even dragging their first grandson across the world to live in a tent) is inspirational. I am lucky to have them in my cheering section. I hope to do the same for my children – they have set the bar very high.

While he won't remember every detail, my son Aidan was an integral part of this project, and I will always remember sharing fieldwork with him. He was two years old when we arrived in Madagascar and he spent the year making up his own Malagasy/English dialogue with Tsamsia, playing in dirt, eating mangos, spotting the lemurs when I couldn't, and keeping Jason and me on our toes as we potty trained and kept him safe from scorpions. Seeing Madagascar through his eyes was priceless.

ix

I am saving the most important thank you for last. Jason, my husband, traveled and worked side by side with me, kept our son safe and having fun, and supported my dream of living with primates. I hope I can return this gift to him someday. My thanks can never be enough.

TABLE OF CONTENTS

List of Figures List of Tables	xviii xix
Chapter 1	
Anthropogenic habitat disturbance and its Effects on Primates	1
1.1 Ecological effects of Anthropogenic habitat disturbance	1
1.2 Theoretical Frameworks to Understand Habitat Degradation	
and its Consequences	21
1.3 Primates in Anthropogenically Disturbed and Degraded Habitats	
– what does the research tell us?	27
1.4 Primate Studies with Theoretical Frameworks	37
1.5 Summary of Primate Studies in Degraded Habitats –	
Compounding Complicating Factors	48
1.6 Importance of Addressing Primates in Disturbed Habitats	54
1.7 Overview of this Study	55
Chapter 2	
Project Background, Methods, and Materials	59
2.1 Introduction	59
2.2 Anthropological Theoretical Foundation	60
2.3 The Study Species	65
2.4 Preliminary Studies	70
2.5 Ecological and Activity Differences by Habitat	75
2.6 Recent Research and Developments at BMSR	78
2.7 Study Site	85
2.8 Data Collection	92
2.9 Hypotheses	107
2.10 Summary	107
Chapter 3	
Effects of Anthropogenic Disturbance on the Forest Structure and	
Phenology in and around Beza-Mahafaly Special Reserve, Madagascar	109
3.1 Introduction	109
3.2 Analysis	115

3.2 Analysis	115
3.3 Forest Physical Structure	117
3.4 Species Diversity and Composition	131
3.5 Phenology of Reserve and Non-Reserve Habitats	132
3.6 <i>Tamarindus indica</i> Phenology and Key Comparisons to 1987-88	139
3.7 Impact of Anthropogenic Disturbance	143
3.8 Discussion	144

Chapter 4

Effects of Anthropogenically Altered Forest on Lemur catta:	
Feeding Ecology	152
4.1 Introduction	152
4.2 Analysis	163
4.3 Dietary Profiles: Plant Parts Consumed	164
4.4 Dietary Profiles: Taxonomic Composition of Diet	182
4.5 Feeding Strategy: Time spent feeding and foraging	220
4.6 Discussion	229
Chapter 5	
Effects of Anthropogenically Altered Forest on Lemur catta: Spatial Ecology	235
5.1 Introduction	235
5.2 Mathada and Analysia	244

5.2 Methods and Analysis	244
5.3 Home Range	246
5.4 Daily Ranging Patterns	250
5.5 Vertical Habitat Use	253
5.6 Arboreality Among Groups	256
5.7 Habitat Canopy Connectedness	259
5.8 Terrestrial travel among study Groups	263
5.9 Anthropogenic habitat disturbance ratings in habitat usage	
among Groups	267
5.10 Group Spread	272
5.11 Discussion	276
pter 6	
ats of Anthronogonia Unitat	

Chapter 6

Effects of Anthropogenic Habitat	
Disturbance on Lemur catta: Activity Patterns	282
6.1 Introduction	282
6.2 Methods and Analysis	286
6.3 Activity Budgets	289
6.4 Activity Budgets: Seasonality	295
6.5 Activity Budgets: Traveling	301
6.6 Effect of Diet on Activity Patterns	306
6.7 Discussion	309

Chapter 7 Effects of Anthropogenic Habitat		
Disturbance on <i>Lemur catta</i> : Social Behavior	31	12
7.1 Introduction	31	12
7.2 Methods and Analysis	31	17
7.3 Intragroup Spacing	31	19
7.4 Affiliative Behaviors	32	26
7.5 Aggressive Behaviors	33	30
7.6 Scentmarking	33	35
7.7 Intergroup Encounters	33	38
7.8 Vocalizations	33	39
7.9 Vigilance Behavior	34	41
7.10 Discussion	34	44

Chapter 8

Understanding the Power of Proximate Mechanisms: Patterns ofRing-Tailed Lemur (Lemur catta) survival at Beza Mahafaly Special Reserve 3508.1 Introduction3508.2 Demography at BMSR: Predictable Proximate Events3528.3 Demography at BMSR: Unpredictable Proximate Events354

8.3 Demography at BMSR: Unpredictable Proximate Events	
8.4 Discussion	

Chapter 9

Synthesis of Results and Implications for	
Primate Conservation in Anthropogenically Disturbed Landscapes	365
9.1 Synthesis of Results	365
9.2 Conservation Recommendations for Lemur catta	370
9.3 Suggestions for Primate Conservation	372
9.4 Directions for Future Research	377

References

382

362

LIST OF TABLES

Table 2.1 Phenological scoring information.	98
Table 2.2 Green Group, Trois Fromage, and Green Group Emigrants.	101
Table 2.3 Teal Group Individuals.	102
Table 2.4 Black Group Individuals.	104
Table 2.5 Light Blue Group individuals.	105
Table 3.1 Kruskal-Wallis test statistic results for habitat variables.	118
Table 3.2 Kruskal-Wallis results for comparisons of <i>Tamarindus indica</i> sapling,	
Azima tetracantha sapling, vines, and zebu feces presence in all habitats.	128
Table 3.3 Results of Wilcoxon rank sum test examining presence of agriculture,	
paths/roads, tree harvesting, and canopy connectedness.	131
Table 3.4 Diversity index results for all transects.	132
Table 3.6 Wilcoxon rank sum results for monthly phenological score comparisons.	136
Table 3.7 Species List for Reserve and Non-Reserve Phenology Transects.	137
Table 3.8 T. indica phenology comparisons between 2005-06 and 1987-88.	141
Table 4.1 Results of fruit consumption for comparisons between each of the	
four study groups.	166
Table 4.2 Results of leaf consumption for comparisons between each of	
the four study groups.	166
Table 4.3 Results of herb consumption for comparisons between each of the	
four study groups.	167
Table 4.4 Results of comparison of median flower consumption for all four groups.	167
Table 4.5 Results from Kruskal-Wallis test comparisons between all four study groups.	170
Table 4.6 Results from Kruskal-Wallis test comparisons between Reserve and Non-	
Reserve Group data pooled.	172
Table 4.7 Results of comparisons between medians of fruit consumption between	
the four study groups in January 2006.	175
Table 4.8 Results of comparisons between medians of fruit consumption between	
the four study groups in March 2006.	176
Table 4.9 Results of comparisons between medians of leaf consumption	
between the four study groups in March 2006.	177
Table 4.10 Results of comparisons between medians of flower consumption	
between the four study groups, and the pooled data comparisons	
from April 2006.	178
Table 4.11 Results of comparisons between medians of leaf consumption between	
the four study groups from May 2006.	180
Table 4.12 Results of comparisons between medians of fruit consumption	
between the four study groups from June 2006.	181
Table 4.13 Results of comparisons between medians of leaf consumption	
between the four study groups from June 2006.	182
Table 4.14 Top 13 species eaten.	186
Table 4.15 Top 10 species consumed from each study group.	187
Table 4.16 Comparison of time spent feeding on all parts of <i>Tamarindus indica</i> .	190
Table 4.17 Comparison of time spent feeding on terrestrial herbs.	191

Table 4.18 Comparisons of time spent feeding on vines.	192
Table 4.19 Comparisons of time spent feeding on Enterospermum	
pruinosum fruit.	193
Table 4.20 Comparisons of time spent feeding on <i>Tallinella grevia</i> fruit.	195
Table 4.21 Comparisons of time spent feeding on Grewia grevei fruit.	196
Table 4.22 Comparisons of time spent feeding on Grewia leucophylla fruit.	197
Table 4.23 Comparisons of time spent feeding on Bridelia sp. fruit.	198
Table 4.24 Comparisons of time spent feeding on Cedrelopsis grevei fruit.	198
Table 4.25 Simpson's Index of Diversity and Species Richness for each	
of the four group's diets.	200
Table 4.26 Kruskal-Wallis test of terrestrial herb and Tamarind consumption	
between groups in December.	203
Table 4.27 Kruskal-Wallis test of Tallinella grevia consumption between	
groups in January.	206
Table 4.28 Kruskal-Wallis test of Herb, Vine, Grewia leucophylla (fruit),	
and <i>Grewia franciscana</i> consumption between groups in February.	206
Table 4.29 Kruskal-Wallis test of Herb and Grewia leucophylla (fruit)	
consumption between all four Groups in March.	209
Table 4.30 Kruskal-Wallis test of Herb and Grewia leucophylla (fruit)	_ • • •
consumption between all four groups in March.	209
Table 4.31 Kruskal-Wallis test results for group by group comparisons in April.	211
Table 4.32 Kruskal-Wallis test results for group by group comparisons in May.	214
Table 4.33 Kruskall-Wallis test results for group to group comparisons in June.	218
Table 4.34 Results of comparisons of group feeding observations between all	
four study groups.	222
Table 4.35 Results of comparisons of group foraging observations between	
all four study groups.	223
Table 4.36 Results of comparisons of foraging observations between pooled	_
Reserve and Non-Reserve Groups.	224
Table 4.37 Results of comparisons of feeding observation comparisons between	
males in all groups.	225
Table 4.38 Results of comparisons of foraging observation comparisons	
Between males in all groups.	226
Table 4.39 Results of comparisons of feeding observation comparisons between	
females in all groups.	228
Table 4.40 Results of comparisons of foraging observation comparisons between	
females in all groups.	229
Table 5.1 Home range size and Population Density for all groups.	247
Table 5.2 Average and Median Daily Path Lengths for all groups.	251
Table 5.3 Results of Kruskal-Wallis test comparing the median path	
length of all four study Groups and Reserve versus Non-Reserve groups.	251
Table 5.4 Average and median height use for each group.	254
Table 5.5 Comparisons statistical analysis of median vertical height use	
between all four study groups and Reserve versus Non-Reserve Groups.	254

Table 5.6 Comparison of overall terrestrial and arboreal habitat use among	
groups.	257
Table 5.7 Results for arboreal habitat use comparison among all four study	
groups and Reserve versus Non-Reserve Groups.	258
Table 5.8 Closed and open canopy habitat usage among all four study groups.	261
Table 5.9 Average and median frequency of closed canopy habitat usage in	
each group.	261
Table 5.10 Results from Kruskal-Wallis analysis of closed canopy usage	-01
among all four study groups and Reserve and Non-Reserve Groups.	
262	
Table 5.11 Comparison of percentage travel time on the ground among each	
of the study groups.	265
Table 5.12 Results from travel on the ground comparisons among all four	
study groups.	265
Table 5.13 Frequency of travel in open habitats (no canopy overhead)	
for each group.	266
Table 5.14 Results from travel in open and closed canopy habitat	
comparisons among all four study groups and Reserve versus Non-Reserve	
pooled data.	267
Table 5.15 Habitat Classification variables. Degradation variables include	
evidence of tree cutting, presence of livestock feces, grazing, roads,	
crops, severe deforestation.	268
Table 5.16 Frequency of each group's habitat disturbance level and median	
disturbance level.	270
Table 5.17 Results from Kruskal-Wallis test of comparisons between all	
four group's habitat disturbance levels and of Reserve versus	
Non-Reserve groups' habitat disturbance levels.	271
Table 5.18 Percentage of time each group spent in each group spread categories.	274
Table 5.19 Kruskal-Wallis results for comparing the frequency (number of times	
each group was observed in each spread category) of group spread results	
between all four study groups and Reserve versus Non-Reserve Groups.	274
Table 6.1 Comparisons of activity budgets for all four study groups and	
pooled data.	290
Table 6.2 Kruskal-Wallis comparisons of feeding, social behavior, resting,	
and traveling.	291
Table 6.3 Kruskal-Wallis comparisons of active time spent running and walking	
between Reserve and Non-Reserve, and all four study groups.	304
Table 6.4 Results of Spearman's Rank correlation coefficient on activity	
budget and diet variables.	307
Table 7.1 Percent of observations that individuals in each group were found in each	
category of proximity.	320
Table 7.2 Percent of observations that groups spent in 'group spread' proximity	
categories.	322
Table 7.3 Results of Kruskal Wallis One-Way ANOVAs of median group	
proximity data comparing the median group spread of each group of	
all categories.	324

Table 7.4 Kruskal-Wallis results from comparing median time devoted to	
grooming among all four study groups and Reserve versus	
Non-Reserve Groups.	328
Table 7.5 Kruskal-Wallis results for comparisons of median play	
observations among all four study groups and Reserve versus	
Non-Reserve Groups.	330
Table 7.6 Results from Kruskal-Wallis comparisons of median observations of	
aggression among all four study groups and Reserve versus	
Non-Reserve Groups.	333
Table 7.7 Context of instances of aggression for each group.	335
Table 7.8 Kruskal-Wallis results comparing median scentmarking observations	
among all four study groups and Reserve versus Non-Reserve Groups.	337
Table 7.9 Number of (primarily alarm calls) vocalizations recorded for each	
study group.	340
Table 7.10 Kruskal-Wallis results comparing vocalization observations	
among all four study groups and Reserve versus Non-Reserve Groups.	341
Table 7.11 Number of vigilance behaviors in each group and in Reserve vs.	-
Non-Reserve Groups.	342
Table 7.12 Kruskal-Wallis results comparing median vigilance observations	•
among all four study groups.	344
Table 8.1 Infant survival in collared groups inside and outside Beza Mahafaly	• • •
Reserve.	359
	507

LIST OF FIGURES

Figure 2.1a Study species with identification collar at Beza Mahafaly Special Reserve.	67
Figure 2.1b <i>Lemur catta</i> , the study species, feeding arboreally.	68
Figure 2.1c Lemur catta traveling terrestrially, mother and infant.	69
Figure 2.2 Anthropogenically disturbed agricultural area north of Parcel 1.	72
Figure 2.3 Anthropogenically disturbed agricultural area south of Parcel 1.	73
Figure 2.4 Anthropogenically disturbed area harvested for trees southeast of Parcel 1.	74
Figure 2.5 Anthropogenic disturbance between Sakamena River and gallery forest	
south of BMSR.	75
Figure 2.6 Eastern border of intact Parcel 1 along the Sakamena River.	75
Figure 2.7 Lemur catta feeding on terrestrial herbs in Parcel 1.	76
Figure 2.8 Gallery forest within Parcel 1 with marked trails.	77
Figure 2.9 Downfall from Cyclone Ernest in Parcel 1 of Beza Mahafaly Special	
Reserve.	83
Figure 2.10 Downfall from Cyclone Ernest in Parcel 1 of BMSR	84
Figure 2.11 Map of Beza Mahafaly Special Reserve and surrounding region.	86
Figure 2.12 Rainfall at Beza Mahfaly Special Reserve from October 2005 – July	
2006.	90
Figure 2.13 Map depicting Teal (Reserve 1 – R1), Green (Reserve 2 – R2), Black	
(Non-Reserve 1 – NR1), and Light Blue (Non-Reserve 2– NR2) Groups'	
home ranges.	94
Figure 2.14 Example of random point transect generated.	94
Figure 2.15 Diagram of Point Centered Quarter Method.	96
Figure 2.16 Map indicating Parcel 1 phenology transect.	97
Figure 2.17 Red line indicates location of phenology transect in anthropogenically	
disturbed, unprotected Lemur catta habitats outside of Parcel 1.	97
Figure 3.1 Box plot indicating median and ranges of the distance from focal point to	
quadrant focal trees, in meters.	119
Figure 3.2 Box plot indicating median focal tree heights and ranges in each habitat,	
measured in meters.	120
Figure 3.3 Box plot showing median crown diamter and ranges in each habitat in	
meters.	121
Figure 3.4 Box plot showing median diameter at breast height (in cm) and ranges for	
focal trees in each habitat.	122
Figure 3.5 Box plot indicating median and ranges of distances from focal point to	100
shrubs in each habitat in meters.	123
Figure 3.6 Box plot indicating median and ranges of distances from focal point	10.4
saplings.	124
Figure 3.7 Box plot indicating number of herbs present in each habitat's sample.	125
Figure 3.8 Box plot indicating median and ranges of soil compaction measurements.	126
Figure 3.9 Box plot indicating median and ranges of light meter readings in each habitat.	127
Figure 3.10 Box plot indicating median number and ranges of <i>Tamarindus indica</i>	
saplings in each habitat.	128

Figure 3.11 Box plot indicating median number and range of Azima tetracantha	
saplings present in each habitat.	129
Figure 3.12 Box plot indicating median number and range of vines present in each	
habitat.	129
Figure 3.13 Box plot indicating median number and range of zebu feces present in	
each habitat.	130
Figure 3.14 Monthly results of phenology scores for Reserve habitats.	135
Figure 3.15 Monthly results of phenology scores for Non-Reserve habitats.	
135	
Figure 3.16 Monthly results of phenology scores for Reserve habitat <i>Tamarindus</i>	
<i>indica</i> trees.	138
Figure 3.17 Monthly results of phenology scores for Non-Reserve habitats.	139
Figure 3.18 Comparison between 05-06 and 87-88 study years of <i>T. indica</i>	
phenology: young leaves.	142
Figure 3.19 Comparison between 05-06 and 87-88 study years of <i>T. indica</i>	
phenology: flowers.	142
Figure 3.20 Comparison between 05-06 and 87-88 study years of <i>T. indica</i>	
phenology: fruit.	143
Figure 3.18 Image of Reserve habitat directly bordering the river with no protection	1.0
from cyclone winds and flooding.	147
Figure 3.19 Image of Non-Reserve habitats with agricultural fields buffering the	
large, old growth Tamarind trees from cyclone winds and flooding.	147
Figure 4.1a, b, and c Illustrates percentages based on the frequencies of the plant parts	11,
consumed for each group, Reserve vs. Non-Reserve, and all groups combined.	165
Figure 4.2a Green Group: monthly variation in detary profile.	168
Figure 4.2b Teal Group: monthly variation in detary profile.	168
Figure 4.2c Light Blue Group: monthly variation in detary profile.	169
Figure 4.2d Black Group: monthly variation in detary profile.	169
Figure 4.3 Box plot indicating median differences of young leaf consumption in	107
October for all four study Groups.	174
Figure 4.4 Box plot indicating median differences of fruit consumption in	1/7
January for all four study groups.	174
Figure 4.5 Box plot indicating median differences of fruit consumption in March for	1/7
all study groups.	175
Figure 4.6 Box plot indicating median differences of leaf consumption in	175
March for all study groups.	176
Figure 4.7 Box plot indicating median differences of flower consumption in April	170
for all study groups.	177
Figure 4.8 Box plot indicating median differences of flower consumption in April	1//
for all study groups.	177
Figure 4.9 Box plot indicating median differences of flower consumption in April	1//
for Non-Reserve and Reserve pooled data.	178
Figure 4.10 Box plot indicating median differences of leaf consumption in May	1/0
for all groups.	179
Figure 4.11 Box plot indicating median differences of fruit consumption in June	1/7
for all groups.	180
tor an groups.	100

Figure 4.12 Box plot indicating median differences of leaf consumption in June	
for all groups.	181
Figure 4.13a Comparison of each groups' species consumption. X-axis indicates the	
number of times each species was eaten.	183
Figure 4.13b Overall comparison of Reserve vs. Non-Reserve Groups' species	
consumption.	184
Figure 4.13c Overall species consumption of the four study groups combined.	185
Figure 4.14 Box plots illustrating the median number of feeding instances on	
Tamarindus indica.	189
Figure 4.15 Box plots illustrating the medians of the four study groups terrestrial	107
herb consumption.	190
Figure 4.16 Box plots illustrating the medians of the four study groups vine	170
consumption.	192
Figure 4.17 Box plots illustrating the medians of the four study groups	174
<i>Enterospermum pruinosum</i> fruit consumption.	193
Figure 4.18 Box plots illustrating the medians of the four study groups	175
<i>Tallinella grevei</i> fruit consumption.	194
Figure 4.19 Box plots illustrating the medians of the four study groups	174
Grewia grevei fruit consumption.	195
Figure 4.20 Box plots illustrating the medians of the four study groups <i>Grewia</i>	175
<i>leucophylla</i> fruit consumption.	196
Figure 4.21 Box plots illustrating the medians of the four study groups	170
Bridelia sp. fruit consumption.	197
Figure 4.22 Box plots illustrating the medians of the four study groups	177
<i>Cedrelopsis grevei</i> fruit consumption.	198
Figure 4.23a Black Group top 13 species in diet for each month.	201
Figure 4.23b Green Group top 13 species in diet each month.	201
Figure 4.236 Clight Blue Group top 13 species in diet each month.	201
Figure 4.23d Teal Group top 13 species in diet for each month.	202
Figure 4.23 Median consumption of herbs by each group in December.	202 204
	204
Figure 4.25 Median comparison of <i>Tamarindus indica</i> (all-parts) consumption	204
by each group in December.	204
Figure 4.26 Median comparison of <i>Tallinella grevei</i> consumption by each group in	205
January.	205
Figure 4.27 Median consumption of herbs by each group in February.	207
Figure 4.28 Median consumption of vines by each group in February.	208
Figure 4.29 Median consumption of <i>Grewia leucophylla</i> (fruit) by each	200
group in February.	208
Figure 4.30 Median consumption of <i>Grewia franciscana</i> by each group in February.	209
Figure 4.31 Median consumption of Herbs by each Group in March.	210
Figure 4.32 Median consumption of <i>Grewia leucophylla</i> (fruit) by each group in March.	211
Figure 4.33 Median consumption of <i>Grewia grevei</i> fruit by each group in April.	212
Figure 4.34 Median consumption of <i>Grewia franciscana</i> fruit by each group in April.	213
Figure 4.35 Median consumption of <i>Grewia leucophylla</i> fruit by each group in April.	213
Figure 4.36 Median consumption of <i>Tamarindus indica</i> fruit by all groups in May.	214
Figure 4.37 Median consumption of terrestrial herbs by all groups in May.	215

Figure 4.38 Median consumption of <i>Grewia grevei</i> fruit by all groups in May.	215
Figure 4.39 Median consumption of <i>Grewia grevei</i> fruit by all groups in May.	216
Figure 4.40 Median consumption of <i>Tamarindus indica</i> (Tamarind) fruit by all	
groups in June.	219
Figure 4.41 Median consumption of Terrestrial Herbs by all groups in June.	219
Figure 4.42 Median consumption of <i>Enterospermum pruinosum</i> fruit by all groups	/
in June.	220
Figure 4.43 Box plot showing medians of observed instances of feeding.	221
Figure 4.44 Box plot showing medians of observed instances of foraging.	222
Figure 4.45 Box plot showing medians of observed instances of foraging for Reserve	
and Non-Reserve Groups.	224
Figure 4.47 Box plot showing medians of observed instances of foraging males	224
in each study group.	226
	220
Figure 4.48 Box plot showing medians of observed instances of foraging males in	227
each Reserve and Non-Reserve Groups.	221
Figure 4.49 Box plot showing medians of observed instances of feeding	220
females in each study group.	228
Figure 4.50 Box plot showing medians of observed instances of foraging	220
females in each study group.	229
Figure 5.1a All groups' home and core kernel ranges overlayed with BMSR	• • •
grid trail map.	248
Figure 5.1b All groups' home and core range overlayed with satellite image of	• • •
BMSR.	249
Figure 5.2 Boxplots of all four study groups' daily path lengths in meters.	252
Figure 5.3 All four study groups' average daily path length by month.	253
Figure 5.4 Boxplot comparison of vertical height use in Reserve versus Non-	
Reserve Groups.	255
Figure 5.5 Boxplot comparison of vertical height use in all four study groups.	255
Figure 5.6a Overall arboreal versus terrestrial habitat use for all groups.	257
Figure 5.6b Percentage of arboreal versus terrestrial habitat use for each study group.	258
Figure 5.7 Boxplot comparison of all four study groups' arboreality.	259
Figure 5.8a Overall closed and open canopy habitat usage for all study groups.	260
Figure 5.8b Percentage closed and open canopy habitat usage among Reserve	
and Non- Reserve Groups.	260
Figure 5.8c Closed and open canopy habitat usage among all four study groups.	261
Figure 5.9 Boxplots of median percentages of Reserve vs. Non-Reserve closed	
canopy habitat usage.	262
Figure 5.10 Boxplots of media percentages of closed canopy usage for all four study	
groups.	263
Figure 5.11a Overall time spent traveling among group behaviors.	264
Figure 5.11b Comparison of percentage travel time on the ground among each of the	_0.
study groups.	264
Figure 5.12 Boxplot describing all four groups percentage of time traveling on	201
the ground.	266
Figure 5.13a Reserve and Non-Reserve frequency of habitat usage according to	200
level of disturbance.	268
	200

Figure 5.13b All groups' frequency of habitat usage according to level of disturbance.	269
Figure 5.14 Boxplot comparison of all four groups' median habitat disturbance levels.	
Green and Teal appear to have no median because the disturbance variables	
were relatively Non-existant.	270
Figure 5.15 Boxplot comparison of Reserve vs. Non-Reserve median habitat	
disturbance levels.	271
Figure 5.16a Overall percentage group spread results for all four study groups.	272
Figure 5.16b Frequency Reserve vs. Non-Reserve Group spread results.	273
Figure 5.16c Frequency group spread results for all four study groups.	273
Figure 5.17 Boxplot comparing Reserve versus Non-Reserve Group spread	-,5
results.	275
Figure 5.18 Boxplot compaing all four study Groups' Group spread results.	275
Figure 6.1 Activity budget for male and female <i>Lemur catta</i> at Berenty.	284
Figure 6.2a Overall percentage activity budget for all four study Groups at BMSR.	289
Figure 6.2b Percentage activity budget comparison for Reserve and Non-Reserve	207
groups.	289
Figure 6.2b Percentage activity budget comparison for all four study groups.	290
Figure 6.3 Boxplots comparing time spent in feeding activities in all four study	270
groups.	292
Figure 6.4a Boxplots comparing time spent resting among all four study groups.	292
Figure 6.4b Boxplot comparing time spent resting in Non-Reserve and Reserve	2)5
groups.	293
Figure 6.5a Boxplot comparing time spent traveling among all four study groups.	293 294
Figure 6.5b Boxplot comparing time spent traveling among Non-Reserve and	274
Reserve Groups.	294
Figure 6.6 Green Group's frequency of feeding, resting, traveling, and in social	294
activities by month.	296
Figure 6.7 Teal Group's frequent of feeding, resting, traveling, and in social	270
activities by month.	296
Figure 6.8 Black Group's frequency of feeding, resting, traveling, and in social	290
activities by month.	297
Figure 6.9 Light Blue Group's frequency of feeding, resting, traveling, and in social	2)1
activities by month.	297
Figure 6.10 Percent of active time spent feeding for Reserve and Non-Reserve	291
Groups each month.	298
Figure 6.11 Percent of active time spent feeding for all four study groups each	290
month.	298
	290
Figure 6.12 Percent of active time in social activities for Reserve and Non-Reserve	200
Groups each month.	299
Figure 6.13 Percent of active time in social activities for all four study groups each	200
month.	299
Figure 6.14 Percent of active time spent resting for Reserve and Non-Reserve Groups.	300
Figure 6.15 Percent of active time spent resting for all four study groups each month.	300
Figure 6.16 Percent of active time spent traveling in Reserve and Non-Reserve	201
Groups each month.	301

Figure 6.17 Percent of active time spent traveling in all four study	
groups each month.	301
Figure 6.18a Percent of active time spent running in Reserve and Non-Reserve	
Groups.	302
Figure 6.18b Percent of active time spent running in all four study groups.	302
Figure 6.19a Percent of active time spent walking in Reserve and Non-Reserve Groups.	303
Figure 6.19b Percent of active time spent walking in all four study groups.	303
Figure 6.20a Boxplot comparison of active time spent running in all four study	505
groups.	305
Figure 6.20b Boxplot comparison of active time spent running in Reserve and Non-	505
Reserve Groups.	305
Figure 6.21a Boxplot comparisons of active time spent walking among all four study	505
	306
groups.	320
Figure 7.1 Overall Nearest Neighbor distance for all study groups.	520
Figure 7.2a Number of instances of nearest neighbor distance categories for Reserve	221
and Non-Reserve Groups.	321
Figure 7.2b Nearest neighbor distances for all four study groups.	321
Figure 7.3a Overall time spent in group proximity categories.	323
Figure 7.3b Time spent in group proximity categories in Reserve versus Non-	222
Reserve Groups.	323
Figure 7.3c Time spent in Group proximity categories in all four study groups.	324
Figure 7.4 Boxplot of Non-Reserve versus Reserve Group proximity data	
comparing medians.	325
Figure 7.5 Boxplot of each groups' group proximity data comparing medians.	325
Figure 7.6 Total counts of grooming incidents among all four study groups.	327
Figure 7.7 Total counts of grooming incidents among Reserve and	
Non-Reserve Groups.	327
Figure 7.8 Observed incidences of play in Reserve and Non-Reserve Groups.	329
Figure 7.9 Observed instances of play in all four study groups.	330
Figure 7.10a Overall incidence of aggression among all four study groups.	332
Figure 7.10b Observations of aggression in Reserve and Non-Reserve Groups.	332
Figure 7.10c Observations of aggression in all four study groups.	333
Figure 7.11a Boxplot of aggressive behavior observations among all four study	
groups.	334
Figure 7.11b Boxplot of aggressive behavior observations among Reserve and Non-	
Reserve Groups.	334
Figure 7.12 Amount of time devoted to scentmarking and number of observations in	
Reserve and Non-Reserve Groups.	336
Figure 7.13 Amount of time devoted to scentmarking and number of observations	
in all four study groups.	337
Figure 7.14 Boxplot of scentmarking behavior observations among all four study	
groups.	338
Figure 7.15 Number of observed interGroup encounters for each study group.	339
Figure 7.16 Number of vocalizations recorded for each study group.	340
Figure 7.17 Number of vigilance behaviors recorded for each study group.	342