Author Archives: jb246

The preprint of our new single-molecule study of the eisosome Bar protein Pil1p is now available on bioRxiv

Lacy M, Baddeley D, Berro J
New single-molecule imaging of the eisosome BAR domain protein Pil1p reveals filament-like dynamics.

Molecular assemblies can have highly heterogeneous dynamics within the cell, but the limitations of conventional fluorescence microscopy can mask nanometer-scale features. We have developed a novel, broadly applicable, fluorescent labeling and imaging protocol, called Single-molecule Recovery After Photobleaching (SRAP), which allowed us to reveal the heterogeneous dynamics of the eisosome, a multi-protein structure on the cytoplasmic face of the plasma membrane in fungi. By fluorescently labeling only a small fraction of cellular Pil1p, the core eisosome BAR domain protein in fission yeast, we visualized whole eisosomes and, after photobleaching, recorded the binding of individual Pil1p molecules with ~20 nm precision. Further analysis of these dynamic structures and comparison to computer simulations allowed us to show that Pil1p exchange is spatially heterogeneous, supporting a new model of the eisosome as a dynamic filament.

New paper from the Berro lab about fast CRISPR/Cas9 edition in fission yeast thanks to a new plasmid selection using fluoride

Congratulations to Ronan Fernandez for his new paper!

Fernandez R, Berro J
Use of a fluoride channel as a new selection marker for fission yeast plasmids and application to fast genome editing with CRISPR/Cas9.
Yeast. 2016 Oct;33(10):549-557.
PMID: 27327046

Fission yeast is a powerful model organism that has provided insights into important cellular processes thanks to the ease of its genome editing by homologous recombination. However, creation of strains with a large number of targeted mutations or containing plasmids has been challenging because only a very small number of selection markers is available in Schizosaccharomyces pombe. In this paper, we identify two fission yeast fluoride exporter channels (Fex1p and Fex2p) and describe the development of a new strategy using Fex1p as a selection marker for transformants in rich media supplemented with fluoride. To our knowledge this is the first positive selection marker identified in S. pombe that does not use auxotrophy or drug resistance and that can be used for plasmids transformation or genomic integration in rich media. We illustrate the application of our new marker by significantly accelerating the protocol for genome edition using CRISPR/Cas9 in S. pombe.

New release of the PatchTrackingTools

A new release of the PatchTrackingTools is now available!

This new release now integrates the functionalities of Trackmate to find and track patches. It also fixes many glitches and performance issues. If you have issues or find glitches please contact Julien Berro directly (email: julien dot berro at

Please cite: Berro J, Pollard TD. Mol Biol Cell. 2014 Nov 5;25(22):3515-27. Synergies between Aip1p and capping protein subunits (Acp1p and Acp2p) in clathrin-mediated endocytosis and cell polarization in fission yeast. PMID: 25143407


Two new papers on endocytosis published in Molecular Biology of the Cell

We recently published two new studies on quantitative analysis of clathrin-mediated endocytosis in fission yeast:

Berro J and Pollard TD. Local and global analysis of endocytic patch dynamics in fission yeast.
Molecular Biology of the Cell. 2014 Nov 5;25(22):3501-14. PMID: 25143395


Berro J and Pollard TD. Synergies between Aip1p and capping protein subunits (Acp1p and Acp2p) in clathrin mediated endocytosis and cell polarization in fission yeast. Molecular Biology of the Cell. 2014 Nov 5;25(22):3515-27. PMID: 25143407

The first paper presents new methods to collect and analyze quantitative microscopy data. We describe a new “temporal super-resolution” method to realign datasets obtained with low temporal resolution and reconstruct a signal with higher temporal resolution. This method allowed us to demonstrate the high reproducibility of endocytic events in fission yeast, and to show that endocytic vesicles move with a diffusive motion that is modulated by actin disassembly. In this paper, we also present a new method to automatically estimate the number of endocytic events in a cell at a given time point.

Application of these new methods allowed us to demonstrate in a second paper that Aip1p caps the barbed ends of actin filaments in a specific context and can be replaced by the canonical capping protein heterodimer Acp1p/Acp2p. However, Aip1p cannot replace Acp1p/Acp2p. Our data also point out new independent functions for Acp1p and Acp2p in cell polarity. Finally, our quantitative analysis allowed us to infer geometric properties of the endocytic structures and to show that the actin meshwork compresses before scission of the endocytic vesicle.

Berro 2014b - Figure 7 - WT only


Welcome to the Berro lab!

The Berro lab is interested in how forces are produced and sensed at the molecular scale in cells. Our research is currently focused on unraveling how the molecular machinery of clathrin-mediated endocytosis generates forces to deform the plasma membrane and conversely how this machinery senses membrane tension and adapts to it. To answer these questions, the lab  develops new experimental and computational quantitative methods for cell biology, biochemistry and biophysics.

Julien Berro @ ASCB Meeting 2013

ASCB meeting 2013Julien Berro will be at the ASCB meeting in New Orleans, December 14 – 18, 2013. Come to his ePoster talk on Sunday and his poster on Tuesday.

Title: A new “temporal super-resolution” method unravels new features in actin dynamics during clathrin-mediated endocytosis

ePoster talk:
Room 232
Sunday, December 15, 2013, 12:00-1:30 pm

Board Number: B124  (Abstract 1825)
Tuesday, December 17, 2013, 1:30 PM – 3:00 PM