
Calibration of CUORE-0 
and CUORE

Jeremy Cushman, Yale University
APS DNP Meeting, 10/29/15



Jeremy Cushman, YaleDNP Meeting, 10/29/15

Cuoricino to CUORE
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Projected:
T1/20νββ  > 9.5 x 1025 yr (90% C.L.)
mββ < 50 – 130 meV

T1/20νββ > 4.0 × 1024 y (90% C.L.)

Astropart. Phys. 34, 
822–831 (2011)

Phys. Rev. Lett. 115, 
102502 (2015)  arXiv:1109.0494

+



Jeremy Cushman, YaleDNP Meeting, 10/29/15

Bolometer calibration
• Voltage signals from the thermistors must be calibrated to convert 

temperature rises in the bolometers to true particle energies

• Bolometers require independent in situ energy calibration

• Monthly, the crystals are exposed to 232Th γ-ray sources

• Gain and detector stability is measured between calibrations with a 
constant-energy pulser

3

Sample pulse.  
The ~1 s decay time is 
typical for pulses of 

any energy.
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Calibration hardware
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• Only one tower
• Sources can be placed outside 

cryostat but inside shielding
• Sources can be positioned by hand

Detector
Towers
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Shield
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Bo�om Lead
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CUORE-0 CUORE

• Outer towers shield inner towers
• Sources must be cold and placed among 

towers inside cryostat
• Source deployment must be automated

Calibration
source paths
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CUORE calibration source deployment
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6 inner source strings
• 3.5 Bq each
• Guided between the 

bolometer towers to 
illuminate the inner detectors

6 outer source strings
• 19.4 Bq each
• Guided to outside of detector 

region and allowed to hang 
freely

• Source strings are outside cryostat during physics data-
taking

• Lowered into cryostat for calibration (~monthly) and 
cooled from 300 K to 10 mK inside guide tubes

• Strings move under their own weight

300 K

4 K

Lead

Inner string

Outer string
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CUORE Detector Calibration System
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1. 4-Kelvin thermalization 
mechanism

2. Stainless steel guide tubes

3. Source string hanging near 
test tower

Installing the calibration 
system in the cryostat

1

2 3
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CUORE-0 calibration spectrum

7

• 232Th decay chain gives a wide variety of gamma lines (7 strong lines)

• Also visible are the single and double escape lines from 2615 keV, at 
2104 keV and 1593 keV, respectively
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Detector resolution
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• 2615 keV gamma peak used to measure detector resolution near Q-value 
(2528 keV)

• Fit contains full energy peak, secondary peak due to Te X-ray escape, 
Compton multiscatter continuum, and flat background
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• Each channel is fit 
independently

• Exposure-weighted 
harmonic mean of FWHM 
values gives 5.1 ± 0.3 keV 
resolution at 2615 keV (0.2%)

• Resolutions of physics and 
calibration data are 
consistent
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CUORE-0 physics spectrum
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• The measured single-gamma energy scale uncertainty is 0.1 keV

(1) e+e–

(2) 214Bi
(3) 40K
(4) 208Tl
(5) 60Co
(6) 228Ac

• Calibration performance is tested by measuring residuals (i.e., 
reconstructed energy – true energy) in the physics data

Phys. Rev. Lett. 115, 102502 (2015)
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Calibration challenges
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• Coincident gammas and single and double escape peaks can be 
reconstructed with different energies
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Physics data residuals
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There is only one contributing tree-level diagram:

We write down the amplitude using the Feynman rules of QED and following

fermion lines backwards. Order of lines themselves is unimportant.
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Exercise 14 Draw Feynman diagram(s) and write down the amplitude for Comp-

ton scattering �e�!
�e�.

6.1 Summing over polarizations

If we knew momenta and polarizations of all external particles, we could calculate

M explicitly. However, experiments are often done with unpolarized particles so

we have to sum over the polarizations (spins) of the final particles and average

over the polarizations (spins) of the initial ones:

|M| 2! |M| 2
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2
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avg. over initial pol.

sum over final pol.
z}|{X

�3
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Factors
1/

2 are due to the fact that each initial fermion has two polarization

(spin) states.
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Exercise 14 Draw Feynman diagram(s) and write down the amplitude for Comp-

ton scattering �e�!
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Double escape event:

• Peak at 2505 keV is the result of coincident 1173 and 1332 keV gammas 
from 60Co, and it is reconstructed 1.9 ± 0.7 keV too high

• Double escape events most resemble neutrinoless double beta decay 
(0νββ) events, so understanding their energy reconstruction is crucial

60Co

1x

2x
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Measurements with 56Co and 60Co

11

• Dedicated calibrations were performed with 60Co and 56Co sources, and 
a similar effects were observed

• Higher-statistics 56Co calibration in CUORE is being explored
• 56Co offers higher energy gammas with many single and double 

escape peaks
• Physical origin of the residuals is being studied
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Conclusions
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• We have constructed the Detector Calibration System to meet the 
challenges of calibrating 988 individual channels in CUORE

• CUORE-0 and CUORE are calibrated with 232Th, with constant-energy 
pulsers to measure gain and stability between calibrations

• CUORE-0 energy resolution: 5.1 ± 0.3 keV FWHM at 2615 keV (0.2%)

• CUORE-0 single-gamma energy scale uncertainty: 0.1 keV

• Studies are ongoing to better understand the energy reconstruction of 
other event types (e.g. coincident gammas, single and double escape 
peaks)
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CUORE
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