# Calibration of CUORE-0 and CUORE 

Jeremy Cushman, Yale University APS DNP Meeting, 10/29/15

## Cuoricino to CUORE



## Bolometer calibration

- Voltage signals from the thermistors must be calibrated to convert temperature rises in the bolometers to true particle energies
- Bolometers require independent in situ energy calibration
- Monthly, the crystals are exposed to ${ }^{232} \mathrm{Th} \gamma$-ray sources
- Gain and detector stability is measured between calibrations with a constant-energy pulser




## Calibration hardware



- Only one tower
- Sources can be placed outside cryostat but inside shielding
- Sources can be positioned by hand


## CUORE



- Outer towers shield inner towers
- Sources must be cold and placed among towers inside cryostat
- Source deployment must be automated


## CUORE calibration source deployment



- Source strings are outside cryostat during physics datataking
- Lowered into cryostat for calibration (~monthly) and cooled from 300 K to 10 mK inside guide tubes
- Strings move under their own weight

6 inner source strings


- 3.5 Bq each
- Guided between the bolometer towers to illuminate the inner detectors

6 outer source strings

- 19.4 Bq each
- Guided to outside of detector region and allowed to hang freely


## CUORE Detector Calibration System



1. 4-Kelvin thermalization mechanism
2. Stainless steel guide tubes
3. Source string hanging near test tower


## CUORE-0 calibration spectrum

- ${ }^{232}$ Th decay chain gives a wide variety of gamma lines (7 strong lines)

- Also visible are the single and double escape lines from 2615 keV , at 2104 keV and 1593 keV , respectively


## Detector resolution

- 2615 keV gamma peak used to measure detector resolution near $Q$-value ( 2528 keV )
- Fit contains full energy peak, secondary peak due to Te X-ray escape, Compton multiscatter continuum, and flat background

- Each channel is fit independently
- Exposure-weighted harmonic mean of FWHM values gives $5.1 \pm 0.3 \mathrm{keV}$ resolution at 2615 keV ( $0.2 \%$ )
- Resolutions of physics and calibration data are consistent


## CUORE-0 physics spectrum

Phys. Rev. Lett. 115, 102502 (2015)

(1) $\mathrm{e}^{+} \mathrm{e}^{-}$
(2) ${ }^{214} \mathrm{Bi}$
(3) ${ }^{40} \mathrm{~K}$
(4) ${ }^{208} \mathrm{Tl}$
(5) ${ }^{60} \mathrm{Co}$
(6) ${ }^{228} \mathrm{Ac}$

- Calibration performance is tested by measuring residuals (i.e., reconstructed energy - true energy) in the physics data
- The measured single-gamma energy scale uncertainty is 0.1 keV


## Calibration challenges

- Coincident gammas and single and double escape peaks can be reconstructed with different energies

- Peak at 2505 keV is the result of coincident 1173 and 1332 keV gammas from ${ }^{60} \mathrm{Co}$, and it is reconstructed $1.9 \pm 0.7 \mathrm{keV}$ too high
- Double escape events most resemble neutrinoless double beta decay $(0 v \beta \beta)$ events, so understanding their energy reconstruction is crucial


## Measurements with ${ }^{56} \mathrm{Co}$ and ${ }^{60} \mathrm{Co}$

- Dedicated calibrations were performed with ${ }^{60} \mathrm{Co}$ and ${ }^{56} \mathrm{Co}$ sources, and a similar effects were observed
- Higher-statistics ${ }^{56} \mathrm{Co}$ calibration in CUORE is being explored
- ${ }^{56} \mathrm{Co}$ offers higher energy gammas with many single and double escape peaks
- Physical origin of the residuals is being studied

Coincident peak from dedicated ${ }^{60} \mathrm{Co}$ calibration

${ }^{56}$ Co spectrum in CUORE-0


## Conclusions

- We have constructed the Detector Calibration System to meet the challenges of calibrating 988 individual channels in CUORE
- CUORE-0 and CUORE are calibrated with ${ }^{232} \mathrm{Th}$, with constant-energy pulsers to measure gain and stability between calibrations
- CUORE-0 energy resolution: $5.1 \pm 0.3 \mathrm{keV}$ FWHM at $2615 \mathrm{keV}(0.2 \%)$
- CUORE-0 single-gamma energy scale uncertainty: 0.1 keV
- Studies are ongoing to better understand the energy reconstruction of other event types (e.g. coincident gammas, single and double escape peaks)


## CUORE



