Calibrating the CUORE

bolometer array

Jeremy Cushman for the CUORE Collaboration Wright Laboratory, Yale University APS DNP Meeting, 10/16/16

Cuoricino to CUORE

CUORE (starting 2016)

Cuoricino (2003-2008)

Astropart. Phys. 34,
822-831 (2011)

$$
\mathrm{T}_{1 / 2}{ }^{0 v \beta \beta}>4.0 \times 10^{24} \mathrm{y}(90 \% \text { C.L. })
$$

CUORE-0
(2013-2015)

Phys. Rev. Lett. 115, 102502 (2015)

Adv. High Energy Phys. 2015, 879871 (2015)

Projected:

$\mathrm{T}_{1 / 2}{ }^{0 v \beta}>9.5 \times 10^{25} \mathrm{yr}(90 \%$ C.L.) $\mathrm{m}_{\beta \beta}<\mathbf{5 0} \mathbf{- 1 3 0} \mathbf{~ m e V}$

Bolometer calibration

- Bolometers are operated at $\sim 10 \mathrm{mK}$
- Temperature rises $\sim 0.1 \mathrm{mK}$ per MeV of energy deposited
- Temperature is measured with temperature-dependent resistors (thermistors)
- Bolometers require independent in situ energy calibration
- For CUORE, we will use:
- ${ }^{232} \mathrm{Th} \gamma$-ray sources approximately every month
- Constant-energy pulser to measure detector stability and correct for variations in detector gain

Calibration source deployment

- Sources are outside cryostat during physics data-taking

- Outer bolometers shield inner bolometers
- Sources must be lowered into cryostat for calibration and cooled to 10 mK
- Sources are put on strings and are lowered under their own weight
- A series of tubes in the cryostat guide the strings

Cooling the sources

- We remove heat from sources with:
- A pair of copper blocks (the "thermalizer") that mechanically squeezes on the sources at 4 K
- Contact between the sources and their guide tubes, which are thermalized to different cryostat stages

Detector region

- All detectors are now installed in cryostat
- 6 inner guide tubes are installed alongside the detector towers in the cryostat

Outer calibration sources

6 outer guide tubes run along the outside of the copper $50-\mathrm{mK}$ shield

Control system

Calibration source deployment is automatic and can be monitored remotely

Commissioning

- We have operated the full calibration system at base temperature ($<10 \mathrm{mK}$)
- Deployment takes ~ 6 hours per string (24 hours for all strings in parallel)
- In commissioning, we have been able to stay below target temperature of 10 mK
- Withdrawing the strings takes a similar amount of time, due to frictional heating

Simulated calibration spectrum

- Many γ lines are available from the ${ }^{232}$ Th chain for calibration with CUORE

Simulated ${ }^{232}$ Th CUORE calibration spectrum

- Lines span a range of energies from 239 keV to 2615 keV
- Single-escape and double-escape lines are visible at 2104 keV and 1593 keV
- We are planning a single ${ }^{56} \mathrm{Co}$ calibration to study response to higherenergy γ-rays and a variety of double-escape lines

Calibration in CUORE-0

- Calibration performance can be tested by measuring residuals (i.e., reconstructed energy - true energy) in the physics data

Full CUORE-0 spectrum

- In CUORE-0, the single- γ energy scale uncertainty was 0.1 keV

Phys. Rev. Lett. 115, 102502 (2015)

Conclusions

- CUORE will calibrated with ${ }^{232} \mathrm{Th}$ sources contained inside copper capsules on Kevlar strings
- Constant-energy pulsers will measure gain and stability between calibrations
- We have operated the full calibration system in cryostat commissioning runs at base temperature
- Calibration system is ready for CUORE detector commissioning
J. S. Cushman et al, "The Detector Calibration System for the CUORE cryogenic bolometer array", arxiv:1608.01607 [physics.ins-det]

CUORE

$\$$ VirginiaTech
Invent the Future ${ }^{\circledR}$ - $\square_{\text {- }}$ Massachuset Technology
14 Lawrence Livermore National Laboratory

Also at DNP:

DD. 00003
EA. 00066
EA. 00080
EA. 00081
FD. 00003
FD. 00004
HH. 00004
NF. 00005
NF. 00006
NF. 00009
V. Singh: Search for Neutrinoless Double Beta Decay with CUORE
N. Deporzio: Scintillating Bolometer Monte Carlo for Rare Particle Event Searches
S. Dutta: Slow Monitoring Systems for CUORE
B. Daniel: Simulations toward Effective Calibrations of the CUORE Detector
C. Davis: CUORE-0 Measurement of $2 v \beta \beta$ decay
K. E. Lim: Search for WIMP-Induced Annual Modulation with the CUORE-0 Experiment
R. Hennings-Yeomans: CUPID: CUORE Upgrade with Particle IDentification
B. Schmidt: Optimizing the CUORE data processing in search for $0 \nu \beta \beta$ decay
B. Welliver: Online Data Quality and Bad Interval Detection for CUORE
E. Hanson: Characterization of single layer anti-reflective coatings for Ge and Si substrates

Backup

Rate uniformity

- Monte Carlo simulations show that the average event rate per each column of crystals is between 38 and 49 mHz (after pileup cuts)
- We expect a rate uniformity of within $\sim 25 \%$ between the different columns of crystals

Load cell profile

Calibration challenges

- Coincident gammas and single and double escape peaks can be reconstructed with different energies

- Peak at 2505 keV is the result of coincident 1173 and $1332 \mathrm{keV} \gamma$-rays from ${ }^{60} \mathrm{Co}$, and it is reconstructed $1.9 \pm 0.7 \mathrm{keV}$ too high
- Double escape events most resemble neutrinoless double beta decay $(0 v \beta \beta)$ events, so understanding their energy reconstruction is crucial

Measurements with ${ }^{56} \mathrm{Co}$ and ${ }^{60} \mathrm{Co}$

- Dedicated calibrations were performed with ${ }^{60} \mathrm{Co}$ and ${ }^{56} \mathrm{Co}$ sources in CUORE-0, and a similar effects were observed
- Higher-statistics ${ }^{56} \mathrm{Co}$ calibration in CUORE is planned
- ${ }^{56} \mathrm{Co}$ offers higher energy γ-rays with many single and double escape peaks
- Residuals cannot currently be reproduced in Monte Carlo, but their physical cause is under investigation

Coincident peak from dedicated ${ }^{60} \mathrm{Co}$ calibration

${ }^{56}$ Co spectrum in CUORE-0

