Calibrating the CUORE bolometer array

Jeremy Cushman for the CUORE Collaboration Wright Laboratory, Yale University APS DNP Meeting, 10/16/16

Cuoricino to CUORE

CUORE (starting 2016)

Bolometer calibration

- Bolometers are operated at ~10 mK
- Temperature rises ~0.1 mK per MeV of energy deposited
- Temperature is measured with temperature-dependent resistors (thermistors)
- Bolometers require independent *in situ* energy calibration
- For CUORE, we will use:
 - ²³²Th γ-ray sources approximately every month
 - Constant-energy pulser to measure detector stability and correct for variations in detector gain

Calibration source deployment

- Sources are outside cryostat during physics data-taking
- Outer bolometers shield inner bolometers
- Sources must be lowered into cryostat for calibration and cooled to 10 mK
- Sources are put on strings and are lowered under their own weight
- A series of tubes in the cryostat guide the strings

Cooling the sources

- We remove heat from sources with:
 - A pair of copper blocks (the "thermalizer") that mechanically squeezes on the sources at 4 K
 - Contact between the sources and their guide tubes, which are thermalized to different cryostat stages

DNP Meeting, 10/16/16

Detector region

- All detectors are now installed in cryostat
- 6 inner guide tubes are installed alongside the detector towers in the cryostat

Outer calibration sources

6 outer guide tubes run along the outside of the copper 50-mK shield

Control system

Calibration source deployment is automatic and can be monitored remotely

Commissioning

- We have operated the full calibration system at base temperature (<10 mK)
- Deployment takes ~6 hours per string (24 hours for all strings in parallel)
- In commissioning, we have been able to stay below target temperature of 10 mK
- Withdrawing the strings takes a similar amount of time, due to frictional heating

Simulated calibration spectrum

• Many γ lines are available from the ²³²Th chain for calibration with CUORE

- Simulated ²³²Th CUORE calibration spectrum
- Lines span a range of energies from 239 keV to 2615 keV
- Single-escape and double-escape lines are visible at 2104 keV and 1593 keV

• We are planning a single ^{56}Co calibration to study response to higher-energy $\gamma\text{-rays}$ and a variety of double-escape lines

Calibration in CUORE-0

• Calibration performance can be tested by measuring residuals (i.e., reconstructed energy – true energy) in the physics data

Full CUORE-0 spectrum

• In CUORE-0, the single- γ energy scale uncertainty was 0.1 keV

Phys. Rev. Lett. 115, 102502 (2015)

Conclusions

- CUORE will calibrated with ²³²Th sources contained inside copper capsules on Kevlar strings
- Constant-energy pulsers will measure gain and stability between calibrations
- We have operated the full calibration system in cryostat commissioning runs at base temperature
- Calibration system is ready for CUORE detector commissioning

J. S. Cushman *et al,* "The Detector Calibration System for the CUORE cryogenic bolometer array", arxiv:1608.01607 [physics.ins-det]

CUORE

Also at DNP:

- DD.00003 V. Singh: Search for Neutrinoless Double Beta Decay with CUORE
- EA.00066 N. Deporzio: Scintillating Bolometer Monte Carlo for Rare Particle Event Searches
- EA.00080 S. Dutta: *Slow Monitoring Systems for CUORE*
- EA.00081 B. Daniel: *Simulations toward Effective Calibrations of the CUORE Detector*
- FD.00003 C. Davis: CUORE-0 Measurement of $2\nu\beta\beta$ decay
- FD.00004 K. E. Lim: Search for WIMP-Induced Annual Modulation with the CUORE-0 Experiment
- HH.00004 R. Hennings-Yeomans: CUPID: CUORE Upgrade with Particle IDentification
- NF.00005 B. Schmidt: *Optimizing the CUORE data processing in search for 0vββ decay*
- NF.00006 B. Welliver: *Online Data Quality and Bad Interval Detection for CUORE*
- NF.00009 E. Hanson: *Characterization of single layer anti-reflective coatings for Ge and Si substrates*

Backup

14

Rate uniformity

- Monte Carlo simulations show that the average event rate per each column of crystals is between 38 and 49 mHz (after pileup cuts)
- We expect a rate uniformity of within ~25% between the different columns of crystals

Load cell profile

Calibration challenges

• Coincident gammas and single and double escape peaks can be reconstructed with different energies

- Peak at 2505 keV is the result of coincident 1173 and 1332 keV γ -rays from 60 Co, and it is reconstructed 1.9 \pm 0.7 keV too high
- Double escape events most resemble neutrinoless double beta decay $(0\nu\beta\beta)$ events, so understanding their energy reconstruction is crucial

Measurements with ⁵⁶Co and ⁶⁰Co

- Dedicated calibrations were performed with ⁶⁰Co and ⁵⁶Co sources in CUORE-0, and a similar effects were observed
- Higher-statistics ⁵⁶Co calibration in CUORE is planned
 - ^{56}Co offers higher energy $\gamma\text{-rays}$ with many single and double escape peaks
- Residuals cannot currently be reproduced in Monte Carlo, but their physical cause is under investigation

