Sequential Screening
A first example

- leisure travelers $\nu \sim U[1, 2]$
- business travelers $\nu \sim U[0, 1] \cup U[2, 3]$
- marginal cost of production $c = 1$
- ex post pricing versus ex ante pricing
- price of ticket and refund fee of ticket
Continuous Types

- zero period type $t \in [0, 1]$, first period type $v \in [0, 1]$
 \[
 \max_{x(t,v)y(t,v)} \int \int f(t) x(t, v) - cy(t, v) g(v \mid t) \, dvdt
 \]
- subject to sequential incentive constraints $t = 1$:
 \[
 \forall t, \forall v, v'; \quad vy(t, v) - x(t, v) \geq vy(t, v') - x(t, v')
 \]
- and $t = 0$: $\forall t, t'$
 \[
 \int f(t) x(t, v) - cy(t, v) g(v \mid t) \, dvdt \\
 \geq \\
 \int f(t) x(t', v) - cy(t', v) g(v \mid t) \, dvdt
 \]
- participation constraint (interim for all t)
 \[
 \int (vy(t, v) - x(t, v)) g(v \mid t) \, dv
 \]
Lemma

The second period incentive compatibility constraints are satisfied if and only if

1. \(\frac{\partial u(t, v)}{\partial v} = y(t, v) \)
2. \(y(t, v) \) is nondecreasing in \(v \) for each \(t \).

but now we have only necessary conditions for the first period

Lemma

The first period incentive compatibility constraints are satisfied only if:

1. the information rent evolves
 \[
 \frac{dU(t)}{dt} = - \int y(t, v) \left(\frac{\partial G(v | t)}{\partial t} \right) dv,
 \]
2. the cumulative delivery evolves:
Multidimensional Mechanism Design

Theorem

Suppose T is ordered by FSD. If a delivery rule $y(t,v)$ solves the relaxed problem, and if $y(t,v)$ is non-decreasing in t for all v and in v for all t, then there exist transfer payments $x(t,v)$ such that the sequential mechanism \{$y(t,v), x(t,v)$\} is optimal.

- we next discuss an example as to how these condition is violated...
Counterexample (for Missing Sufficient Conditions)

- t is drawn from F
- $v = t$ with probability p; with probability $1-p$ it is drawn from F independently
- the impulse response is 1 if $v = t$, otherwise it is 0.
- when solving the relaxed problem (i.e., maximizing dynamic virtual) we get an allocation that is first-best for any (v, t) such that $v \neq t$, but there is a distortion if $v = t$
- this allocation is not implementable, which is the easiest to see by noting that for any fixed t, the allocation should be monotone in v, but now we have something non-monotone.
Recall the Pricing Conditions of the Relaxed Constraints

• the conditions for \(t = 0 \) and \(t = 1 \):

\[
p_0 (\theta_0) = \theta_0 + (1 - \alpha) \frac{F_0(\theta_0)}{f_0(\theta_0)}, \]
\[
p_1 (\theta_0, \theta_1) = \theta_1 - (1 - \alpha) \frac{F_0(\theta_0)}{f_0(\theta_0)} \frac{\partial F_1(\theta_1|\theta_0)}{\partial \theta_0}.
\]

• in particular if \(\theta_0 = \theta_1 \), then

\[
p_1 (\theta_0, \theta_1) = \theta_1 - (1 - \alpha) \frac{F_0 (\theta_0)}{f_0 (\theta_0)} p
\]

and if \(\theta_0 \neq \theta_1 \), then

\[
p_1 (\theta_0, \theta_1) = \theta_1
\]

• but now the perior \(t = 1 \), cannot be monotone
Restatement of the Sufficient Condition

- consider the Lemma 3.3 of Courty and Li

Lemma

Suppose that T is ordered by FSD. If a delivery rule $y(t, v)$ solves the relaxed problem, and if $y(t, v)$ is non-decreasing in t for all v and in v for all t, then there exist transfer payments $x(t, v)$ such that the sequential mechanism $\{x(t, v), y(t, v)\}$ is optimal.

- issue: even with FSD, the allocation $y(t, v)$ is not guaranteed to be monotone increasing in along each dimension, and hence the statement is still not in terms of primitives (but in terms of optimality conditions).