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Abstract

We consider the problem of constructing confidence intervals (CIs) for a linear func-

tional of a regression function, such as its value at a point, the regression discontinuity

parameter, or a regression coefficient in a linear or partly linear regression. Our main

assumption is that the regression function is known to lie in a convex function class,

which covers most smoothness and/or shape assumptions used in econometrics. We

derive finite-sample optimal CIs and sharp efficiency bounds under normal errors with

known variance. We show that these results translate to uniform (over the function

class) asymptotic results when the error distribution is not known. When the function

class is centrosymmetric, these efficiency bounds imply that minimax CIs are close to

efficient at smooth regression functions. This implies, in particular, that it is impossi-

ble to form CIs that are tighter using data-dependent tuning parameters, and maintain

coverage over the whole function class. We specialize our results to inference in a linear

regression, and inference on the regression discontinuity parameter, and illustrate them

in simulations and an empirical application.
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1 Introduction

In this paper, we study the problem of constructing one- and two-sided confidence intervals

(CIs) for a linear functional Lf of an unknown regression function f in a broad class of

regression models with fixed regressors, in which f is known to belong to some convex

function class F . The linear functional may correspond to the value of f at a point, the

regression discontinuity parameter, an average treatment effect under unconfoundedness, or

a regression coefficient in a linear or partly linear regression. The class F may contain

smoothness restrictions (e.g. a bound on the second derivative, or assuming f is linear as in

a linear regression), and/or shape restrictions (such as monotonicity, or sign restrictions on

regression coefficients in a linear regression). Often in applications, the function class will

be indexed by a smoothness parameter C. This is the case, for instance, when F = FLip(C),

the class of Lipschitz continuous functions with Lipschitz constant C.

We further assume that the regression errors are normal, with known variance, which

allows us to derive finite-sample optimal CIs and sharp finite-sample efficiency bounds. We

show that these finite-sample results translate to uniform asymptotic results when the error

distribution is unknown under high-level regularity conditions, and derive sufficient low-level

conditions in an application to regression discontinuity. This finite-sample approach allows

us to use the same framework and methods to cover problems that are often seen as outside

of the scope of nonparametric methods, such as discrete regressors in regression discontinuity

(Lee and Card, 2008) and linear regression with restrictions on the sign and magnitude of

coefficients (Andrews, 2001). In our setup, one need not worry about whether regressors can

be considered continuous or discrete, or whether the constraints on f are “parametric” or

“nonparametric.”

Our main contribution is to derive sharp efficiency bounds that have implications for

data-driven approaches to model and bandwidth selection in both “parametric” and “non-

parametric” settings. First, for a given quantile β, we characterize one-sided CIs that mini-

mize the maximum β quantile of excess length over a convex class G. The optimal CI [ĉ,∞)

takes a simple form. The lower limit ĉ is obtained by taking an estimator L̂ that trades

off bias and variance in a certain optimal sense and is linear in the outcome vector, and

subtracting (1) the standard deviation of L̂ times the usual critical value based on a normal

distribution and (2) a bias correction to guarantee proper coverage. This bias correction, in

contrast to bias corrections often used in practice, is based on the maximum bias of L̂ over

F , and is therefore non-random.

When G = F , this procedure yields minimax one-sided CIs. Setting G ⊂ F to a class
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of smoother functions is equivalent to “directing power” or attempting to “adapt” to these

smoother functions while maintaining coverage over F . The procedure gives a sharp bound

on the scope for adaptation for one-sided CIs. We show that when the class F is centrosym-

metric (i.e. f ∈ F implies −f ∈ F), the scope for directing power is severely limited: CIs

that are minimax for β quantile of excess length also optimize excess length over a class

G of functions that are sufficiently smooth (such as the singleton class comprising just the

zero function, or the class of constant functions if F places bounds on derivatives) but at

a different quantile. Furthermore, a CI that is minimax for a given quantile is also highly

efficient at smooth functions for the same quantile. For instance, a CI for the conditional

mean at a point that is minimax over the Lipschitz class FLip(C) is asymptotically 95.2%

efficient at a constant function relative to a CI that directs all power at this function. For

function classes smoother than FLip(C), the efficiency is even higher.

Our second main result is to derive a confidence set that minimizes its expected length at

a single function g. We compare the performance of this confidence set to the optimal fixed-

length CI derived in Donoho (1994) (i.e. confidence intervals of the form L̂± χ, where L̂ is

an affine estimator and the non-random half-length χ, which depends only on the regressors,

is chosen to satisfy the coverage requirement). We find that, similarly to minimax one-

sided CIs, when F is centrosymmetric, confidence sets that optimize expected length at a

function g that is sufficiently smooth are not shorter than fixed-length CI by more than a few

percentage points. For instance, the fixed-length CI for a conditional mean at a point when

f is constrained to be in FLip(C) is asymptotically 95.6% efficient at any constant function

relative to a confidence set that optimizes its excess length at this function.

An important practical implication of these results is that it is not possible to avoid having

to explicitly specify the smoothness constant C: procedures that use data-driven rules to

determine the smoothness of f (such as using data-driven bandwidths or variable selection)

must either fail to improve upon the minimax CIs or fixed-length CIs (that effectively assume

the worst case smoothness), or else fail to maintain coverage over the whole parameter space.

In order to avoid having to specify the smoothness constant, one has to strengthen the

assumptions on f . For instance, one can impose shape restrictions that break the centrosym-

metry, as in Cai, Low, and Xia (2013) or Armstrong (2015), or self-similarity assumptions

that break the convexity, as in Giné and Nickl (2010) or Chernozhukov, Chetverikov, and

Kato (2014).

Alternatively, one can consider intervals that satisfy weaker notions of coverage than the

traditional definition of a confidence interval, such as average coverage (see Cai, Low, and
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Ma, 2014 and Hall and Horowitz, 2013 for recent examples).

We apply these results to two popular models. First, we consider the problem of inference

in linear regression with restricted parameter space.

The general results give bounds for the scope for directing power at “smooth” alterna-

tives where certain parameters are zero while maintaining coverage over a convex parameter

space. Since directing power at such alternatives is often the goal of model or variable se-

lection, unless one imposes non-convex or asymmetric restrictions on the parameter space,

the scope for model or variable selection, such as using CIs considered in Andrews and

Guggenberger (2009a) and McCloskey (2012), is severely limited. We also discuss sparsity

as a non-convex constraint and point out that, while it is possible to adapt to the indices

of non-zero coefficients, our results bound the scope for adapting to the number of non-zero

coefficients.

Second, we consider inference about the regression discontinuity parameter. We illustrate

our results an empirical application from Lee (2008), and show that the resulting CIs are in-

formative and simple to construct. We also consider one-sided CIs and two-sided fixed-length

CIs based on local linear estimators, with bandwidths chosen to optimize their maximum

excess length and half-length, respectively.

Local linear estimators have been popular in empirical practice for regression disconti-

nuity due to asymptotic relative efficiency results of Cheng, Fan, and Marron (1997) for

minimax estimation with squared error loss. Using the same function classes as Cheng, Fan,

and Marron (1997), we consider finite-sample efficiency for CIs, and we compute efficiency

at smooth functions as well as minimax efficiency. We show that in the Lee (2008) applica-

tion, CIs based on local linear estimators with triangular kernel are highly efficient relative

to the optimal CIs discussed above. We also illustrate through a Monte Carlo study that

popular data-driven bandwidth selectors used in the regression discontinuity setting lead to

undercoverage, even when one uses these bandwidth selectors as a starting point for bias

correction or undersmoothing (see Appendix A).

Our results and setup build on a large statistics literature on optimal estimation and infer-

ence in the nonparametric regression model. This literature has mostly been concerned with

constructing an optimal estimator of Lf (see, e.g., Stone (1980), Ibragimov and Khas’minskii

(1985), Fan (1993), Donoho (1994), Cheng, Fan, and Marron (1997) and references therein),

and it is often cited in econometrics to formalize claims about optimal kernels and rates

of convergence.1 Our results are closely related to those in Low (1997) and Cai and Low

1For example, in their survey of nonparametric methods in econometrics, Ichimura and Todd (2007) cite
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(2004a), who consider confidence sets that take the form of a two-sided CI, and, subject to

coverage over F , derive bounds on the maximum expected length over G, and the results in

Cai, Low, and Xia (2013), who obtain bounds on the expected length of two-sided CIs at a

single function g. The bounds of Low (1997) and Cai and Low (2004a) imply that when F
is constrained only by bounds on a derivative, the expected length of any CI that maintains

coverage must shrink at the minimax rate for any any f in the interior of F . We extend

and sharpen these findings by showing that, for smooth f , this remains true whenever F is

centrosymmetric, even if we don’t require the confidence set to take the form of an interval,

and, moreover, not only is the rate the same as the minimax rate, the constant must be close

to that for fixed-length CIs.

Many procedures popular in practice avoid having to specify C by dropping the require-

ment that the CI be valid uniformly over F , and only require it to be valid pointwise for each

f ∈ F . For example, under the assumption that f has at least one derivative, one can con-

struct a 95% CI for a conditional mean at a boundary point x = 0 by using a kernel estimator

with bandwidth that shrinks at a rate slightly faster than n−1/3 (i.e. undersmooth relative

to the mean-square error optimal bandwidth), and adding and subtracting 1.96 times the

standard deviation of this estimator. Even though the estimator is biased in finite samples,

so that the CI will undercover in finite samples, for any given f with at least one derivative,

the bias is of lower order than the variance, so that asymptotically, it will be negligible and

the CI will have pointwise asymptotic coverage equal to 95% under regularity conditions.

However, it is clear that, in any given sample, one can make the bias arbitrarily large, and

hence the finite-sample coverage arbitrarily close to zero, by setting f(x) = Cx with C

sufficiently large. Indeed, any bandwidth choice—including one that makes an “asymptotic

promise” to undersmooth—implies a maximum value of C beyond which the coverage of a

nominal 95% CI in any given sample will fail to be close (say within 5%) to the nominal

coverage. Thus, even if one is willing to accept a given amount of undercoverage, a CI based

on undersmoothing involves an implicit choice of C.

One way to address this problem is to allow for more flexible bandwidth sequences as

in Calonico, Cattaneo, and Titiunik (2014) and Calonico, Cattaneo, and Farrell (2015).

Another approach is to try to estimate an upper bound on the possible bias, as in Schennach

(2015). However, our results imply that, in order to achieve good coverage over a range of

functions f in a given sample, one cannot avoid having to specify an explicit bound on the

smoothness of f . Once this is done, there is very little scope for improving upon a CI that

optimal rates of convergence for nonparametric estimation given in Stone (1980).
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uses this a priori smoothness bound to choose the optimal bandwidth and to bound the bias.

Similar problems with CIs that are valid pointwise, but not uniformly, have been pointed

out in several parametric and semiparametric models popular in econometrics, including

instrumental variables models (Bound, Jaeger, and Baker, 1995; Staiger and Stock, 1997) and

moment inequalities (Andrews and Guggenberger, 2009b). They are also central to inference

after model selection (Leeb and Pötscher, 2005), as we discuss in detail in the application to

linear regression in Section 4. As this literature points out, in any given sample, there will be

part of the parameter space where pointwise CIs will severely undercover. In nonparametric

settings, however, the problem can be much worse in the sense that the problematic part

of the parameter space may be much larger. Brown, Low, and Zhao (1997) give examples

of nonparametric estimation problems where every point of the parameter space can be a

point of superefficiency, in contrast to parametric estimation problems, where the set of

superefficiency has Lebesgue measure zero (see also Chapter 1.2.4 in Tsybakov, 2009). As

Robins and van der Vaart (2006) point out, dropping uniformity “appears to contradict

the very definition of a confidence set”—to construct a CI for Lf , one must specify some

parameter space F such that the CI covers Lf with the prespecified probability for all f in

the parameter space.

Pointwise-in-f asymptotics may lead to other inconsistencies, such as assuming that the

covariates are continuous even if they are clearly discrete in the given sample. This has lead

to considerable confusion in the regression discontinuity literature, in which very different

modeling approaches have been proposed when covariates are discrete instead of continuous

(see Lee and Card, 2008). In contrast, in this paper we take a finite-sample approach, and

only use asymptotics to relax the normality assumption. When covariates are continuous,

additional simplifications obtain: certain sums are approximated by integrals that do not

depend on the design points, and the optimal procedures correspond asymptotically to kernel

estimators with different bandwidths. However, one need not use these simplifications in

forming estimates and CIs: the finite sample approach still leads to CIs that are easily

computable and relatively simple, as we illustrate in our regression discontinuity application

in Section 5. Thus, one can take the same approach whether the covariates are discrete or

continuous and not worry about how to best model them.

The remainder of this paper is organized as follows. In Section 2, we illustrate our results

in a simple example. Section 3 introduces the general setup and states the main results.

Section 4 applies these results to linear regression. Section 5 considers an application to re-

gression discontinuity. Section 6 concludes. Proofs, long derivations, and additional results
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are collected in appendices. Appendix A conducts a Monte Carlo study to illustrate the

main results. Appendix B contains proofs for the main results in Section 3, and Appendix C

additional details for constructing two-sided CIs studied in that section. The Supplemen-

tal Materials contain further appendices. Supplemental Appendix D contains derivations

for Sections 4 and 5. Supplemental Appendices E, F, and G contain asymptotic results.

Supplemental Appendix H contains additional figures for the application in Section 5.

2 Simple example

To illustrate the main theoretical results, consider the nonparametric regression yi = f(xi)+

ui, where i = 1, . . . , n, the regressors xi ∈ R are treated as fixed and the errors ui are i.i.d.

standard normal. We assume that f lies in a class of Lipschitz continuous functions with

constant C,

FLip(C) = {f : |f(x1)− f(x2)| ≤ C|x1 − x2|} . (1)

We are interested in inference on the the value of the regression function f at a point, which

we can normalize to zero.

Consider first the problem of constructing one-sided confidence intervals (CIs). In par-

ticular, consider the problem of constructing CIs [ĉ,∞) that minimize the maximum βth

quantile of excess length, supf∈F qf,β(f(0) − ĉ), where qf,β denotes the βth quantile of the

excess length f(0) − ĉ. Such CIs can be obtained by inverting tests of the null hypothesis

H0 : f(0) ≤ L0 that maximize their minimum power under the alternativeH1 : f(0) ≥ L0+2b,

where the half-distance b to the alternative is calibrated so that the minimum power of the

minimax test is given by β (see Section 3.3 for derivation).

To construct the minimax test, note that if we set µ = (f(x1), . . . , f(xn))′, and Y =

(y1, . . . , yn)′, we can view the testing problem as an n-variate normal mean problem Y ∼
N(µ, In). The vector of means µ is constrained take values in the convex sets M0 =

{(f(x1), . . . , f(xn))′ : f ∈ F , f(0) ≤ L0} under the null, and M1 = {(f(x1), . . . , f(xn))′ : f ∈
F , f(0) ≥ L0 + 2b} under the alternative. To solve this problem, let’s first consider a two-

point testing problem with the null and alternative given by some µ0 ∈ M0 and µ1 ∈ M1.

By the Neyman-Pearson lemma, the optimal test of µ0 vs µ1 is the likelihood ratio test,

which rejects for large values of (µ1 − µ0)′Y , and has power Φ (‖µ1 − µ0‖ − z1−α) at µ1.

Since this testing problem is easier than testing M0 against M1, minimizing this power over

µ0 ∈ M0 and µ1 ∈ M1 must give an upper bound for the minimum power of the minimax

test. Let us conjecture that the solution to the minimax testing problem is given by the
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solution to the two point testing problem with µ0 and µ1 given by the minimizers µ∗0 and µ∗1

of Φ (‖µ1 − µ0‖ − z1−α). To verify this conjecture, we need to show that the power of the

resulting test is minimized over M1 at µ∗1, and it controls size over M0 (see Theorem 8.1.1

in Lehmann and Romano 2005), in which case µ∗0 and µ∗1 are called “least favorable.” In

Lemma B.2, which follows directly from Section 2.4.3 in Ingster and Suslina (2003), we show

that for convex M0 and M1, this is indeed the case.

Since the power Φ (‖µ1 − µ0‖ − z1−α) is increasing in the distance between µ1 and µ0,

the least favorable functions correspond to the points µ∗0 = (f ∗(x1), . . . , f ∗(xn))′ and µ∗1 =

(g∗(x1), . . . , g∗(xn))′ that minimize the Euclidean distance between the sets M0 and M1,

(f ∗, g∗) = argmin
f,g∈F

n∑
i=1

(f(xi)− g(xi))
2 subject to f(0) ≤ L0, g(0) ≥ L0 + 2b. (2)

To satisfy the constraints, the solution must satisfy g∗(x) ≥ L0 + 2b − C|x| and f ∗(x) ≤
L0 + C|x| for all x. Therefore, the difference between the two functions is bounded by

|g∗(x)− f ∗(x)| ≥ 2 max {b− C|x|, 0}. Since we can make the bound sharp by setting

g∗(x) = L0 + b+ max{b− C|x|, 0}, f ∗(x) = L0 + b−max{b− C|x|, 0},

these functions must solve (2). The first panel of Figure 1 shows the least favorable functions.

Intuitively, to make H0 and H1 hardest to distinguish, the null and alternative functions f ∗

and g∗ converge to each other as fast as possible under the Lipschitz constraint and the null

and alternative constraints f ∗(0) ≤ L0 and g∗(0) ≥ L0 + 2b.

The likelihood ratio test that corresponds to the two-point test based on the least favor-

able means rejects for large values of Y ′(µ∗1−µ∗0), with critical value given by the distribution

of Y under µ∗0. By working out this critical value and rearranging the resulting expression,

we obtain the minimax test that rejects whenever

L̂h − L0 − biasf∗(L̂h) ≥ var(L̂h)
1/2z1−α. (3)

Here L̂h is a Nadaraya-Watson kernel estimator based on the triangular kernel k(u) =

max {0, 1− |x|} and bandwidth h = b/C,

L̂h =

∑n
i=1(g∗(xi)− f ∗(xi))yi∑n
i=1(g∗(xi)− f ∗(xi))

=

∑n
i=1 k(xi/h)yi∑n
i=1 k(xi/h)

,
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var(L̂h) =
∑n
i=1 k(xi/h)2

(
∑n
i=1 k(xi/h))2

is the variance of L̂h, z1−α is the 1−α quantile of a standard normal

distribution, and biasf∗(L̂h) = b
(

1−
∑n
i=1 k(xi/h)2∑n
i=1 k(xi/h)

)
is the bias of the estimator L̂h under f ∗.

The estimator L̂h is normally distributed with variance that does not depend on the true

function f . Its bias, however, does depend on f . To control size under H0 in finite samples,

it is necessary to subtract the largest possible bias of L̂h under the null, which obtains at f ∗

(we show in the next section that this is in fact the largest bias over all of FLip(C)). Since

the rejection probability of the test is decreasing in the bias, its minimum power occurs when

the bias is minimal under H1, which occurs at g∗, and is given by

β = Φ
(

2b
√∑n

i=1 k(xi/h)2 − z1−α

)
. (4)

Since the estimator, its variance, and the non-random bias correction are all independent of

the particular null L0, the CI based on inverting these tests as H0 varies over R is given by

[ĉα,b,∞), where ĉα,b = L̂h − biasf∗(L̂h)− sd(L̂h)z1−α. (5)

This CI minimizes the βth quantile maximum excess length with β given by the minimax

power of the tests (4). Equivalently, given a quantile β that we wish to optimize, set the

half-distance to the alternative bβ as the solution to bβ = (zβ+z1−α)/
√

4
∑n

i=1 k(xi/(C/bβ))2.

This solution has four important features. First, it is simple to construct. Second,

different choices of the constants C and b (or β) affect the optimal bandwidth, but not

the kernel—the triangular kernel is therefore minimax optimal for the Lipschitz class (see

Armstrong and Kolesár (2016) and references therein for general results on optimal kernels

in these settings). Third, the least favorable functions, g∗ and f ∗, correspond to scaled

versions of this optimal kernel—the least favorable functions and the kernel have the same

shape. Fourth, the bias correction is non-random, depends on the worst-case bias of L̂h

(rather than an estimate of its bias), and doesn’t disappear asymptotically. In particular,

suppose that for some d, 1
nh

∑h
i=1 k(xi/h)2 → d

∫
k(u)2du = 2

3
d and 1

nh

∑h
i=1 k(xi/h)→ d as

n→ 0, nh→∞ and h→ 0 (under random sampling of the regressors xi, this holds with d

corresponding to the density of xi at 0). Let hβ denote the bandwidth that is optimal for

the β quantile. Then the worst case bias of L̂hβ equals Chβ/3(1 + o(1)), while its variance

equals 2
3nhβfx(0)

(1 + o(1)), with the optimal bandwidth given by

hβ =
1

2

(
3

C2nfx(0)

)1/3

(zβ + z1−α)2/3(1 + o(1)), (6)
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so that the squared bias and variance are of the same order, O(n−2/3). Consequently, no

CI that “undersmooths” in the sense that it is based on an estimator whose bias is of lower

order than its variance can be minimax optimal asymptotically or in finite samples.

An apparent disadvantage of this CI is that it requires the researcher to choose a smooth-

ing constant C. Addressing this issue leads to “adaptive” CIs. Adaptive CIs achieve good

excess length properties for a range of parameter spaces FLip(Cj), C1 < · · · < CJ , while

maintaining coverage over their union, which is given by FLip(CJ), where CJ is a conserva-

tive upper bound on the possible smoothness of f . In contrast, a minimax CI only considers

worst-case excess length over FLip(CJ). To derive an upper bound on the scope for adaptiv-

ity, consider the problem of finding a CI that optimizes excess length over FLip(0) (the space

of constant functions), while maintaining coverage over FLip(C) for some C > 0.

To derive the form of such CI, consider the one-sided testing problem H0 : f(0) ≤ L0 and

f ∈ FLip(C) against the one-sided alternative H1 : f(0) ≥ L0 + b and f ∈ FLip(0) (so that

now the half-distance to the alternative is given by b/2 rather than b). This is equivalent to

a multivariate normal mean problem Y ∼ N(µ, In), with µ ∈ M0 under the null as before,

and µ ∈ M̃1 = {(L, . . . , L) : L ≥ L0 + b}. Since the null and alternative are convex, by the

same arguments as before, the least favorable functions minimize the Euclidean distance

between the two sets. The minimizing functions are given by g̃∗(x) = L0 + b, and f̃ ∗ = f ∗

(same function as before). The second panel of Figure 1 plots this solution. Since g̃∗− f̃ ∗ =

(g∗ − f ∗)/2, the resulting test is again given by (3), and the CI is also the same as before—

the only difference is that we moved the half-distance to the alternative from b to b/2.

Hence, the minimax CI that optimizes a given quantile of excess length over FLip(C) also

optimizes its excess length over the space of constant functions, but at a different quantile.

By calculating the power of the minimax test at constant alternatives, it can be seen that

the scope for improvement is still small if one compares excess length at the same quantile:

in Section 3.3, we show that, for this smoothness class, the CI that minimaxes excess length

at a given quantile is at least 95.2% optimal asymptotically for constant functions at the

same quantile. For function classes smoother than FLip(C), the efficiency is even higher.

Therefore, it is not possible to “adapt” to cases in which the regression function is

smoother than the least favorable function.

A two-sided CI based on L̂h could be formed by adding and subtracting biasf∗(L̂h) +

sd(L̂h)z1−α/2, thereby accounting for possible bias on either side. However, this is conser-

vative, since the bias cannot be in both directions at once. Since (L̂h − Lf)/ sd(L̂h) fol-

lows a normal distribution with variance one and bias ranging from − biasf∗(L̂h)/ sd(L̂h) to
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biasf∗(L̂h)/ sd(L̂h), a nonconservative CI takes the form L̂h±sd(L̂h) cvα(biasf∗(L̂h)/ sd(L̂h)),

where cvα(t) is the 1 − α quantile of the absolute value of a N(t, 1) distribution. This cor-

responds to a fixed-length CI, as defined in Donoho (1994). The optimal choice of h for a

fixed-length CI simply minimizes sd(L̂h) cvα(biasf∗(L̂h)/ sd(L̂h)) (since the length of the CI

is nonrandom, minimizing it does not invalidate the CI). It follows from results in Donoho

(1994) that the fixed-length CI centered at the optimal L̂h is in fact optimal among all fixed-

length CIs centered at affine functions of the yis, and is close to optimal among fixed-length

CIs centered at any estimate.

The restriction to fixed-length CIs rules out adaptivity: the length of the CI must always

reflect the worst possible bias of the estimator. In Section 3.4 we derive a sharp efficiency

bound that shows that, similar to the one-sided case, these CIs are nonetheless highly efficient

relative to variable-length CIs that optimize their length at smooth functions.

The key to these non-adaptivity results is that the class F is centrosymmetric (i.e. f ∈ F
implies −f ∈ F) and convex. The centrosymmetry implies that the least favorable functions

in the minimax problem (2) are, up to constants, negatives of one another, and the convexity

is necessary for Lemma B.2 to apply. For adaptivity to be possible, we need shape restrictions

like monotonicity, or non-convexity of F . In the next section, we give general statements of

these results.

3 General characterization of optimal procedures

We consider the following setup and notation, much of which follows Donoho (1994). We

observe data Y of the form

Y = Kf + σε (7)

where f is known to lie in a convex subset F of a vector space, and K : F → Y is a linear

operator between F and a Hilbert space Y . We use 〈·, ·〉 to denote the inner product on Y
and ‖ · ‖ to denote the norm. The error term ε is standard Gaussian with respect to this

inner product: for any g ∈ Y , 〈ε, g〉 is normal with E〈ε, g〉 = 0 and var (〈ε, g〉) = ‖g‖2. We

are interested in constructing a confidence set for a linear functional Lf .

3.1 Special cases

The general setup (7) covers a number of important models as special cases. First, it can

be used to study Gaussian nonparametric regression with fixed design, in which we observe
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{xi, yi}ni=1 with xi a deterministic vector, and

yi = f(xi) + ui, ui ∼ N(0, σ2(xi)) independent across i, (8)

where σ2(x) is known. Here Y = (y1/σ(x1), . . . , yn/σ(xn))′, Y = Rn, Kf = (f(x1)/σ(x1), . . . ,

f(xn)/σ(xn))′ and with 〈x, y〉 given by the Euclidean inner product x′y. Depending on

the definition of the linear functional L, this model covers several important situations

encountered in applied econometrics, including: inference at a point, regression disconti-

nuity (see Section 5), and average treatment effects under unconfoundedness (with Lf =
1
n

∑n
i=1(f(wi, 1)− f(wi, 0)) where xi = (wi, d

′
i)
′, di is a treatment indicator and wi are con-

trols). The finite sample results in this model will often lead to analogous uniform (over F)

asymptotic results in the more realistic setting in which the distribution of ui is not known

(see Section 3.6).

Second, the setup (7) can be used to study the linear regression model with restricted

parameter space. For simplicity, we consider the case with homoskedastic errors

Y = Xθ + σε, ε ∼ N(0, In), (9)

where X is a fixed n × k design matrix and σ is known. This fits into our framework with

f = θ, X playing the role of K, taking θ ∈ Rk to Xθ ∈ Rn, and Y = Rn with the Euclidean

inner product 〈x, y〉 = x′y. We are interested in a linear functional Lθ = `′θ where ` ∈ Rk.

We consider this model in Section 4. While we focus on homoskedastic linear regression

for exposition, the results extend to the multivariate normal location model θ̂ ∼ N(θ,Σθ),

which obtains as a limiting experiment of regular parametric models. Thus, the finite sample

results for OLS could be extended to local asymptotic results for other regular parametric

models, with the constraint sets F and G (defined below) shrinking at a
√
n rate.

In addition to the regression models (8) and (9), the setup (7) includes other nonpara-

metric and semiparametric regression models such as the partly linear model (where f takes

the form g(w1)+γ′w2, and we are interested in a linear functional of g or γ). It also includes

the Gaussian white noise model, which can be obtained as a limiting model for nonparamet-

ric density estimation (see Nussbaum, 1996) as well as nonparametric regression (see Brown

and Low, 1996). We refer the reader to Donoho (1994, Section 9) for details of these and

other models that fit into the general setup (7).
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3.2 Performance criteria and a class of estimators

Let us now define the performance criteria that we use to evaluate confidence sets for Lf .

Following the usual definition, a set C = C(Y ) is a 100 · (1− α)% confidence set for Lf if

inf
f∈F

Pf (Lf ∈ C) ≥ 1− α. (10)

We denote the collection of all confidence sets C that satisfy (10) by Iα. Among confidence

sets in this collection, we can compare their performance at a particular f ∈ F using expected

length,

Λf (C) = Efλ(C(Y )),

where λ is Lebesgue measure.

Allowing confidence sets to have arbitrary form can lead to sets C that are complicated

and difficult to interpret or even compute. One way of avoiding this is to restrict attention

to sets in Iα that take the form of a fixed-length confidence interval (CI). A fixed-length CI

takes the form [L̂− χ, L̂ + χ] for some estimate L̂ and some nonrandom χ (for instance, in

the regression model (8), χ may depend on the regressors xi and σ2(xi), but not on yi). For

an estimator L̂, let

χα(L̂) = min
{
χ : inf

f∈F
Pf
(
|L̂− Lf | ≤ χ

)
≥ 1− α

}
denote the half-length of the shortest fixed-length 100 · (1− α)% CI centered at L̂.

The restriction to fixed-length CIs simplifies their comparison: for any f ∈ F , the ex-

pected length equals 2χα(L̂), so among fixed-length CIs, one simply prefers those with smaller

half-length. On the other hand, one may worry that fixed-length CIs may be costly since the

length cannot “adapt” to reflect greater precision for different functions f ∈ F . To address

this concern, in Section 3.4, we compare the length of fixed-length CIs to sharp bounds on

the optimal expected length infC∈Iα Λf (C).
If C is restricted to take the form of a one-sided confidence interval (CI) [ĉ,∞), we cannot

use expected length as a criterion. We can, however, compare performance at a particular

parameter f using the βth quantile of excess length,

qf,β(Lf − ĉ),

where qf,β(Lf− ĉ) denotes the βth quantile of Lf− ĉ, the excess length, under f . To measure
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performance globally over some set G, we use the maximum βth quantile of the excess length,

qβ(ĉ,G) = sup
g∈G

qg,β(Lg − ĉ). (11)

If G = F , minimizing qβ(ĉ,F) over one-sided CIs that satisfy (10) gives minimax excess

length. If G ⊂ F is a class of smoother functions, minimizing qβ(ĉ,G) yields CIs that direct

power: they achieve good performance when f is smooth, while maintaining coverage over all

of F . A CI that achieves good performance over multiple classes G is said to be “adaptive”

over these classes. In Section 3.3, we give sharp bounds on (11) for a single class G, which

gives a benchmark for adapting over multiple classes (cf. Cai and Low, 2004a).

We will also relate the optimal decision rules for constructing CIs to the rules for con-

structing estimators that minimize the maximum mean squared error (MSE) over F . For

an estimator L̂, the maximum mean squared error over F is defined as

R(L̂) = sup
f∈F

Ef (L̂− Lf)2.

The main tool in deriving decision rules that are optimal or close to optimal for these

performance criteria will be the ordered modulus of continuity between F and G, defined by

Cai and Low (2004a)

ω(δ;F ,G) = sup {Lg − Lf : ‖K(g − f)‖ ≤ δ, f ∈ F , g ∈ G}

for any sets F and G with a non-empty intersection (so that the set over which the supremum

is taken is non-empty). When G = F , ω(δ;F ,F) is the (single-class) modulus of continuity

over F (Donoho and Liu, 1991), and we will denote it by ω(δ;F). The ordered modulus

ω(·;F ,G) is concave, which implies that the superdifferential at δ (the set of slopes of tangent

lines at (δ, ω(δ;F ,G)) is nonempty for any δ > 0. Throughout the paper, we let ω′(δ;F ,G)

denote an (arbitrary unless otherwise stated) element in this set. Typically, ω(·;F ,G) is

differentiable, in which case ω′(δ;F ,G) is defined uniquely as the derivative at δ. We use

g∗δ,F ,G and f ∗δ,F ,G to denote a solution to the ordered modulus problem (assuming it exists),

and f ∗M,δ,F ,G = (f ∗δ,F ,G + g∗δ,F ,G)/2 to denote the midpoint.

We will show that optimal decision rules will in general depend on the data Y through

an estimator of the form

L̂δ,F ,G = Lf ∗M,δ,F ,G +
ω′(δ;F ,G)

δ

〈
K(g∗δ,F ,G − f ∗δ,F ,G), Y −Kf ∗M,δ,F ,G

〉
, (12)
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with δ and G depending on the optimality criterion. When F = G, we denote the estimator

L̂δ,F ,F by L̂δ,F . When the sets F and G are clear from the context, we use ω(δ), L̂δ, f
∗
δ , g∗δ

and f ∗M,δ in place of ω(δ;F ,G), L̂δ,F ,G, f
∗
δ,F ,G, g

∗
δ,F ,G and f ∗M,δ,F ,G to avoid notational clutter.

Let biasG(L̂) = supf∈G Ef (L̂−Lf) and biasG(L̂) = inff∈G Ef (L̂−Lf) denote the maximum

and minimum bias of an estimator L̂ over the set G. As we show in Lemma B.1 in the

Appendix, a useful property of L̂δ,F ,G is that its maximum bias over F and minimum bias

over G are attained at f ∗δ and g∗δ , respectively, and are given by

biasF(L̂δ,F ,G) = − biasG(L̂δ,F ,G) =
1

2
(ω(δ;F ,G)− δω′(δ;F ,G)) . (13)

As remarked by Cai and Low (2004b), no estimator can simultaneously achieve lower maxi-

mum bias over F , higher minimum bias over G, and lower variance (which for L̂δ,F ,G doesn’t

depend on f) than the estimators in the class {L̂δ,F ,G}δ>0. Estimators (12) can thus be used

to optimally trade off various levels of bias and variance.

Let us briefly discuss two symmetry properties that lead to simplifications when satisfied

by F . The first we call translation invariance.

Definition 1 (Translation Invariance). The function class F is translation invariant if there

exists a function ι ∈ F such that Lι = 1 and f + cι ∈ F for all c ∈ R and f ∈ F .

Translation invariance will hold in most cases where the parameter of interest Lf is

unrestricted. For example, if Lf = f(0), it will hold with ι(x) = 1 if F places monotonicity

restrictions and/or restrictions on the derivatives of f , but not if F places a bound on the

function itself. Under translation invariance, by Lemma B.3 in the Appendix, the modulus

is differentiable and ω′(δ;F ,G) = δ/〈Kι,K(g∗δ − f ∗δ )〉, which gives

L̂δ,F ,G = Lf ∗M,δ +
〈K(g∗δ − f ∗δ ), Y −Kf ∗M,δ〉
〈K(g∗δ − f ∗δ ), Kι〉

.

The second property we consider is centrosymmetry.

Definition 2 (Centrosymmetry). The function class F is centrosymmetric if f ∈ F =⇒
−f ∈ F .

Under centrosymmetry, the functions that solve the single-class modulus problem can be

seen to satisfy g∗δ = −f ∗δ , and the modulus is given by

ω(δ;F) = sup {2Lf : ‖Kf‖ ≤ δ/2, f ∈ F} . (14)
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Since f ∗δ = −g∗δ , f ∗M,δ is the zero function and L̂δ,F is linear:

L̂δ,F =
2ω′(δ;F)

δ
〈Kg∗δ , Y 〉 =

〈Kg∗δ , Y 〉
〈Kg∗δ , Kι〉

, (15)

where the last equality holds when F is translation invariant as well as centrosymmetric.

Centrosymmetry and translation invariance are not needed for most of the results in this

paper. However, centrosymmetry will play central role in bounding the gains from directing

power at smooth functions, as we show in Section 3.3 for one-sided CIs and in Section 3.4

for two-sided CIs.

3.3 Optimal one-sided CIs

Given β, a one-sided CI that minimizes (11) among all one-sided CIs with level 1−α is based

on L̂δβ ;F ,G where δβ = σ(zβ + z1−α) and zq denotes the qth quantile of a standard normal

distribution. The CI takes a simple form, which is given in the following theorem. Proofs of

the results in this section are given in Appendix B.

Theorem 3.1. Let F and G be convex with G ⊆ F , and suppose that f ∗δ and g∗δ achieve the

ordered modulus at δ with ‖K(f ∗δ − g∗δ )‖ = δ. Let

ĉα,δ,F ,G = L̂δ,F ,G − biasF(L̂δ,F ,G)− z1−ασω
′(δ;F ,G).

Then, for β = Φ(δ/σ − z1−α), ĉα,δ,F ,G minimizes qβ(ĉ,G) among all one-sided 1 − α CIs,

where Φ denotes the standard normal cdf. The minimum coverage is taken at f ∗δ and equals

1 − α. All quantiles of excess length are maximized at g∗δ . The worst case βth quantile of

excess length is qβ(ĉα,δ,F ,G,G) = ω(δ;F ,G).

The assumption that the modulus is achieved with ‖K(f ∗δ −g∗δ )‖ = δ rules out degenerate

cases: if ‖K(f ∗δ −g∗δ )‖ < δ, then relaxing this constraint does not increase the modulus, which

means that ω′(δ;F ,G) = 0 and the optimal CI does not depend on the data.

The estimator L̂δ,F ,G is normally distributed with bias that depends on f , and variance

σ2ω′(δ;F ,G)2, which is independent of f . The CI in Theorem 3.1 uses the fact that the

maximum bias over F and minimum bias over G are taken at f ∗δ and g∗δ . Since the coverage

of a one-sided CI decreases with the bias of the estimator that it is based on, to ensure

proper coverage, we need to subtract biasF(L̂δ,F ,G), the maximum bias under F , from L̂δ,F ,G,

and then subtract the 1 − α quantile of the of a mean zero normal variable with the same
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variance as L̂δ,F ,G. On the other hand, all quantiles of excess length decrease with the bias:

they are greatest when the bias is minimal, which gives the second part of the theorem.

One can’t do better than using ĉα,δ,F ,G because the test that rejects L0 when L0 /∈
[ĉα,δ,F ,G,∞) is minimax for H0 : Lf ≤ L0 and f ∈ F against H1 : Lf ≥ L0 + ω(δ;F ,G) and

f ∈ G, where L0 = Lf ∗δ . If both F and G are translation invariant, f ∗δ +cι and g∗δ +cι achieve

the ordered modulus for any c ∈ R, so that, varying c, this test can be seen to be minimax

for any L0. Thus, under translation invariance, the CI in Theorem 3.1 inverts minimax one

sided tests with distance to the null given by ω(δ). These results for minimax tests can

be derived from an application of a result characterizing minimax tests as Neyman-Pearson

tests for mixtures over least favorable distributions over the null and alternative (Theorem

8.1.1 in Lehmann and Romano, 2005), where the least favorable null and alternative are

given by point masses at f ∗δ and g∗δ (see Lemma B.2 in the Appendix and Section 2.4.3 in

Ingster and Suslina, 2003).

Given the model (7), implementing the CI from Theorem 3.1 requires the researcher to

choose a quantile β to optimize, and to choose the set G. There are two natural choices for β.

If the objective is to optimize the performance of the CI “on average”, then optimizing the

median excess length (β = 0.5) is a natural choice. Since for any CI [ĉ,∞) that is an affine

function of the data Y , the median and expected excess lengths coincide, and since ĉα,δ,F ,G is

affine in the data, setting β = 0 also has the advantage that it minimizes the expected excess

length among CIs that are affine. Alternatively, if the CI is being computed as part of a

power analysis, then setting β = 0.8 is natural, as under translation invariance, it translates

directly to statements about 80% power, a standard benchmark in such analyses (Cohen,

1988).

For the set G, there are two leading choices. First, setting G = F yields minimax CIs:

Corollary 3.1 (One-sided minimax CIs). Let F be convex, and suppose that f ∗δ and g∗δ
achieve the single-class modulus at δ with ‖K(f ∗δ − g∗δ )‖ = δ. Let

ĉα,δ,F = L̂δ,F −
1

2
(ω(δ;F)− δω′(δ;F))− z1−ασω

′(δ;F).

Then, for β = Φ(δ/σ − z1−α), ĉα,δ,F minimizes the maximum βth quantile of excess length

among all 1− α CIs for Lf . The minimax excess length is given by ω(δ;F).

The minimax criterion may be considered overly pessimistic: it focuses on controlling the

excess length under the least favorable function. This leads to the second possible choice for

G: set it to a smaller convex class of smoother functions G ⊂ F . The resulting CIs will then
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achieve the best possible performance when f is smooth, while maintaining coverage over all

of F .

It is instructive to consider the case in which F is centrosymmetric, and the solution to

the ordered modulus problem satisfies

f − g∗δ,F ,G ∈ F for all f ∈ F . (16)

This will be satisfied if g∗δ,F ,G is “smooth” enough. If F is translation invariant, then (16)

holds for G = span(ι). If F places a bound on the pth derivative of f (e.g. F is a Hölder

class) it holds if all g ∈ G are polynomials of order p− 1 or lower: the pth derivative of any

g ∈ G is always zero, so that if f satisfies the particular bound, so does f − g.

Under condition (16), if f ∗δ,F ,G and g∗δ,F ,G solve the modulus problem ω(δ,F ,G), then

f ∗δ,F ,G − g∗δ,F ,G and 0 (the zero function) solve ω(δ;F , {0}) and vice versa (note that, under

centrosymmetry, Equation (16) holds for g∗δ,F ,G iff. it holds for −g∗δ,F ,G), so that

ω(δ;F ,G) = ω(δ;F , {0}) = sup {−Lf : ‖Kf‖ ≤ δ, f ∈ F} =
1

2
ω(2δ;F), (17)

where the last equality obtains because under centrosymmetry, maximizing −Lf = L(−f)

and maximizing Lf are equivalent, so that the maximization problem is equivalent to (14).

Furthermore, g∗δ,F ,G − f ∗δ,F ,G = 1
2
(g∗2δ,F − f ∗2δ,F), so that

L̂δ,F ,G = L̂2δ,F + Lf ∗M,δ,F ,G −
ω′(2δ;F)

2δ

〈
K(g∗2δ,F − f ∗2δ,F), Kf ∗M,δ,F ,G

〉
= L̂2δ,F − biasF(L̂2δ,F)/2,

(18)

where the second line follows since biasF(L̂δ,F ,G) = biasF(L̂2δ,F)/2 by (17). Since L̂δ,F ,G

and L̂2δ,F are equal up to a constant, ĉα,δ,F ,G = ĉα,δ,F ,{0} = ĉα,2δ,F . Thus, when (16) holds,

optimizing excess length over G is equivalent to optimizing excess length at {0}, and it leads

to the same class of CIs as the minimax criterion—the only difference is that the excess

length is calibrated differently:

Corollary 3.2. Let δβ = σ(zβ + z1−α). Let F be centrosymmetric, and let G ⊆ F be any

convex set such that the solution to the ordered modulus problem exists and satisfies (16) with

‖K(f ∗δβ − g
∗
δβ

)‖ = δβ. Then the one-sided CI ĉα,δβ ,F that is minimax for the βth quantile also

optimizes qβ̃(ĉ;G), where β̃ = Φ((zβ − z1−α)/2). In particular, ĉα,δβ ,F optimizes qβ̃(ĉ; {0}).

Moreover, the efficiency of ĉα,δβ ,F for the βth quantile of maximum excess length over G
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is given by

inf ĉ : [ĉ,∞)∈Iα qβ(ĉ,G)

qβ(ĉα,δβ ,F ,G)
=

ω(δβ;F ,G)

qβ(ĉα,δβ ,F ,G)
=

ω(2δβ;F)

ω(δβ;F) + δβω′(δβ;F)
. (19)

The second part of the Corollary follows since by (18), biasG(L̂δ,F) = 0, which implies

qβ(ĉα,δβ ,F ,G) = (ω(δβ;F) + δβω
′(δβ;F))/2.

The first part of Corollary 3.2 states that minimax CIs that optimize a particular quantile

β will also minimize the maximum excess length over G at a different quantile β̃. For

instance, a CI that is minimax for median excess length among 95% CIs also optimizes

Φ(−z0.95/2) ≈ 0.205 quantile under the zero function. Vice versa, the CI that optimizes

median excess length under the zero function is minimax for the Φ(2z0.5 + z0.95) = 0.95

quantile.

The second part of Corollary 3.2 gives the exact cost of optimizing the “wrong” quantile β̃.

Since the one-class modulus is concave, δω′(δ) ≤ ω(δ), and we can lower bound the efficiency

of ĉα,δβ ,F given in (19) by ω(2δβ)/(2ω(δβ)) ≥ 1/2. Typically, however, the efficiency is much

higher. In particular, in the regression model (8), the one-class modulus often satisfies

ω(δ;F) = n−r/2Aδr(1 + o(1)) (20)

as n → ∞ for some constant A, where r/2 is the rate of convergence of the minimax root

MSE. We show that this is the case under regularity conditions in the regression discontinuity

application in Lemma G.6 (see Donoho and Low, 1992, for other cases where (20) holds). In

this case, (19) evaluates to 2r

1+r
(1 + o(1)), so that the asymptotic efficiency depends depends

only on r. Figure 2 plots the asymptotic efficiency as a function of r.

Suppose F is smooth enough so that the rate of convergence satisfies r ≥ 1/2 (as is the

case for inference at a point when functions in F have at least one directional derivative).

Then the asymptotic efficiency of minimax CIs relative to CIs that optimize their excess

length for the zero function is at least 21/2/(1 + 1/2) = 94.3% when indeed f = 0. Since

adapting to the zero function is at least as hard as adapting to any set G that includes it,

this implies that if F is convex and centrosymmetric, “directing power” yields very little

gain in excess length no matter how optimistic one is about where to direct it.

This result places a severe bound on the scope for adaptivity in settings in which F is

convex and centrosymmetric: any CI that performs better than the minimax CI by more

than the ratio in (19) must fail to control coverage at some f ∈ F . Adaptation is only
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possible when centrosymmetry fails (typically by placing shape restrictions on f , such as

monotonicity), or convexity fails (by say placing sparsity assumptions on the coefficients in

a series expansion of f).

3.4 Two-sided CIs and minimax MSE estimators

Finding optimal rules for two-sided confidence intervals, or for estimation criteria such as

mean squared error, is more complicated. However, it is known that estimators in the class

L̂δ,F and the associated fixed-length CIs are minimax optimal when one restricts attention

to affine estimators (i.e. estimators of the form L̂ = a + 〈b, Y 〉 for constants a ∈ R and

b ∈ Y) if δ is chosen optimally. These results are due to Donoho (1994), and we state them

below for convenience. We then give a solution to the problem of constructing confidence

sets that optimize expected length Λf (C) at a single function f , and use this result to bound

the efficiency of fixed-length affine CIs among all confidence sets.

To describe the Donoho (1994) results, first consider the normal model Z ∼ N(µ, 1)

where µ ∈ [−τ, τ ]. The minimax affine mean squared error for this problem is

ρA(τ) = min
δ(Y ) affine

max
µ∈[−τ,τ ]

Eµ(δ(Y )− µ)2.

The solution is achieved by shrinking Y toward 0, namely δ(Y ) = cρ(τ)Y , with cρ(τ) =

τ 2/(1 + τ 2), which gives ρA(τ) = τ 2/(1 + τ 2). The length of the smallest fixed-length affine

100 · (1− α)% confidence interval is

χA,α(τ) = min

{
χ : there exists δ(Y ) affine s.t. inf

µ∈[−τ,τ ]
Pµ(|δ(Y )− µ| ≤ χ) ≥ 1− α

}
.

The solution is achieved at some δ(Y ) = cχ(τ)Y , and it is characterized in Drees (1999). We

give the details in Appendix C for convenience.

By a sufficiency argument, the minimax MSE affine estimator in the one-dimensional

submodel {gλ+f(1−λ) : λ ∈ [0, 1]} is characterized by a scaling of ρA(τ) for an appropriate

choice of τ , and similarly for χA,α. Donoho (1994) then uses the modulus of continuity to

find the least favorable submodel such that minimax affine estimators and fixed-length CIs

in the submodel are also minimax in the full model. This leads to the following result:

Theorem 3.2 (Donoho 1994). Suppose that δρ is a solution to

cρ(δ/(2σ)) = δω′(δ)/ω(δ),
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and that f ∗δρ , g
∗
δρ

achieve the one-class modulus ω(·;F) at δρ. Then the MSE minimax affine

estimator is of Lf is L̂δρ,F , and its maximum root MSE is given by

R(L̂δρ,F)1/2 =
ω(δρ)

δρ

√
ρA

(
δρ
2σ

)
σ.

Similarly, suppose that δχ is a solution to

cχ(δ/(2σ)) = δω′(δ)/ω(δ),

and that f ∗δχ , g
∗
δχ

achieve the one-class modulus ω(·;F) at δχ. Then the shortest fixed-length

affine CI is given by

L̂δχ,F ±
ω(δχ)

δχ
χA,α

(
δχ
2σ

)
σ.

Theorem 3.2 gives the optimal δ for a particular performance criterion in terms of the

shrinkage coefficient in the one dimensional bounded normal means problem (cρ(·) or cχ(·)).
Often (at least asymptotically), L̂δ,F takes the form of a kernel estimator with bandwidth

determined by δ; this allows for comparisons of optimal bandwidths for different performance

criteria. We perform such comparisons in a companion paper (Armstrong and Kolesár, 2016).

Donoho (1994) also bounds the penalty for restricting attention to affine procedures,

using a formula based on the modulus of continuity. Since the bounds turn out to be very

tight in many situations, the cost of restricting attention to affine procedures is typically not

too large. We refer the reader to Donoho (1994), Drees (1999) and references therein for

details.

On the other hand, just as with minimax one-sided CIs, one may worry that since the

length of fixed-length CIs is driven by the least favorable functions, restricting attention to

fixed-length CIs may be very costly when the true f is smoother. The next result character-

izes the confidence sets that optimizes expected length at a single function g, and thus gives

bounds for the possible performance gains.

Theorem 3.3. Let g ∈ F , and assume that a minimizer fL0 of ‖K(g − f)‖ subject to

Lf = L0 and f ∈ F exists for all L0 ∈ R, and let δL0 = ‖K(g − fL0)‖. Then the confidence

set Cg(Y ) that minimizes Egλ(C) subject to 1−α coverage on F inverts the family of tests φL0

that reject for large values of 〈K(g − fL0), Y 〉 with critical value given by the 1− α quantile

under fL0. The expected length of this confidence set is given by

Eg[λ(Cg(Y ))] = (1− α)E [(ω(σ(z1−α − Z);F , {g}) + ω(σ(z1−α − Z); {g} ,F)) | Z ≤ z1−α] ,
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where Z is a standard normal random variable.

This result gives the exact solution to the problem of “adaptation to a function” posed

by Cai, Low, and Xia (2013), who obtain bounds for this problem in the case where C is

required to be an interval. It follows from the observation in Pratt (1961) that minimum

expected length CIs are obtained by inverting a family of uniformly most powerful tests of

H0 : Lf = L0 and f ∈ F against H1 : f = g. The least favorable null fL0 for such a test is

given by a minimizing ‖K(g − f)‖ subject to Lf = L0. Equivalently, we can obtain it as a

solution to the ordered modulus problem ω(δL0 ;F , {g}) (if L0 ≤ Lg), or ω(δL0 ; {g} ,F) (if

L0 ≥ Lg). The expression for the expected length of Cg(Y ) follows by computing the power

of these tests. The assumption that a minimizer of ‖K(g − f)‖ subject to Lf = L0 and

f ∈ F exists for all L0 ∈ R means that Lf is unbounded over F . This assumption is made

to simplify the statement; a truncated version of the same formula holds when F places a

bound on Lf .

Directing power at a single function is seldom desirable in practice. Theorem 3.3 is very

useful, however, in bounding the efficiency of other procedures, such as fixed-length CIs

from Theorem 3.2. In particular, suppose f − g ∈ F for all f (so that (16) holds with

G = {g}) and that F is centrosymmetric. Then, by arguments in Section 3.3, ω(δ;F , {g}) =

ω(δ; {g} ,F) = 1
2
ω(2δ;F), which yields:

Corollary 3.3. Consider the setup in Theorem 3.3 with the additional assumption that F
is centrosymmetric and g satisfies f −g ∈ F for all f . Then the efficiency of the fixed-length

CI around L̂δχ,F at g relative to all confidence sets is

infC∈Iα Λ(C(Y ), {g})
ω(δχ)2σ

δχ
χA,α

(
δχ
2σ

) =
(1− α)E [ω(2σ(z1−α − Z);F) | Z ≤ z1−α]

ω(δχ)2σ

δχ
χA,α

(
δχ
2σ

) . (21)

The assumption of Corollary 3.3 will be satisfied for smooth functions g, including the

zero function. This efficiency ratio can easily be computed in particular applications, and

we do in Section 5.2 in an application to regression discontinuity. However, it is insightful

to consider the asymptotic efficiency implied by (21) when the one-class modulus satisfies

(20). In this case Theorem 3.2 implies that δχ = 2σc−1
χ (r) + o(1), so that the length of the

fixed-length CI around L̂δχ is given by

n−r/2A2rσr
χA,α(c−1

χ (r))

(c−1
χ (r))1−r (1 + o(1)),
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and we get

infC∈Iα Λ(C(Y ), {g})
ω(δ)2σ
δ

χA,α
(
δ

2σ

) =
(1− α)E[(z1−α − Z)r | Z ≤ z1−α]

(c−1
χ (r))r−1χA,α(c−1

χ (r))
(1 + o(1)) (22)

(here, we use properties of the modulus and χA,α to obtain the above display from the

pointwise-in-δ convergence in (20); see Lemma F.2 in the Supplemental Materials). This

asymptotic efficiency is plotted in Figure 2 as a function of r for α = 0.05. When r = 4/5

(as in the regression discontinuity application in Section 5), for instance, the asymptotic

efficiency is 95.7%. When r = 1 (parametric rate of convergence), the asymptotic efficiency

equals ((1−α)z1−α+φ(z1−α))/z1−α/2, as in the normal mean example in Pratt (1961, Section

5), where φ is standard normal density. For α = 0.05, this yields 84.99%.

Just like with minimax one-sided CIs, this result places a severe bound on the scope for

improvement over fixed-length CIs when F is centrosymmetric. It strengthens the finding in

Low (1997) and Cai and Low (2004a), who derive bounds on the expected length of random

length 1−α CIs (i.e. CIs in the set Iα). Their bounds imply that when F is constrained only

by bounds on a derivative, the expected length of any CI in Iα must shrink at the minimax

rate n−r/2 for any any f in the interior of F . Equation (22) shows that for smooth functions

f , this remains true whenever F is centrosymmetric, even if we don’t require C to take the

form of an interval, and, moreover, not only is the rate the same as the minimax rate, the

constant must be close to that for fixed-length CIs.

On the other hand, when F is not centrosymmetric, it is possible to improve upon the

fixed-length CIs, and Cai and Low (2004a) give a general procedure that is rate-adaptive.

3.5 Confidence Intervals Based on Suboptimal Estimators

The confidence intervals discussed in Sections 3.3 and 3.4 are based on the worst case bias

of L̂δ,F for δ chosen optimally. More generally, for any affine estimator L̂, the set of possible

distributions of L̂ − Lf as f ranges over F is characterized by the set of possible biases of

L̂, and a CI can be constructed based on the maximum and minimum bias. For L̂δ;F , the

maximum and minimum bias are attained g∗δ and f ∗δ no matter how δ is chosen (see Lemma

4 in Donoho, 1994, and Lemma B.1 in the Appendix); this allows a further simplification.

To describe the results, let cvα(b) be the shortest half-length of a 1 − α CI for some

parameter that is centered around a normally distributed estimator with variance one and

maximum absolute bias equal to b. In other words, cvα(b) solves P (|Z+b| ≤ cv) = Φ(cv−b)−
Φ(− cv−b) = 1− α, where Z ∼ N(0, 1). We tabulate these critical values in Table 1.
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Theorem 3.4. Let L̂ = a + 〈w, Y 〉 be an affine estimator such that biasF(L̂) and biasF(L̂)

are finite. Let b = max{|biasF(L̂)|, |biasF(L̂)|}. Then: (i) [L̂− biasF(L̂)− ‖w‖z1−ασ,∞) is

a valid CI, and it has maximum excess length

qβ(L̂;F) = σ‖w‖(zβ + z1−α) + biasF(L̂)− biasF(L̂).

(ii) L̂± cvα(b)σ‖w‖ is the shortest fixed-length 1− α CI centered at L̂.

For L̂δ,F , this holds with

biasF(L̂δ,F) = − biasF(L̂δ,F) =
1

2
(ω(δ)− δω′(δ)) and ‖w‖ = ω′(δ). (23)

Theorem 3.4 can be used along with Theorem 3.2 to bound the efficiency loss from basing

a confidence interval on a suboptimal estimator, or from basing a confidence interval on an

estimator that is optimal for mean squared error, rather than CI length. We do this in

Section 5 for a regression discontinuity application. In Armstrong and Kolesár (2016), we

consider asymptotic implications of this result.

3.6 Unknown Error Distribution

Throughout this section, we have assumed that the error term ε is normal with known

variance. When the error distribution is unknown, one can form estimates and CIs based

on an estimate or guess for the variance function. If the variance function used in forming

the estimate is misspecified, one can use a robust estimate of the variance of the estimate

along with the approach in Section 3.5 in forming the CI. In Supplemental Appendix E

we consider a version of the nonparametric fixed-design regression model with non-normal

errors and show that, under regularity conditions, this leads to CIs that are valid in a uniform

asymptotic sense, with the efficiency bounds carrying over to this setup in an asymptotic

sense as well. These results show that optimal CIs are based on asymptotically normal

estimates in a broad class of settings with non-normal errors.

4 Linear regression

This section considers the linear regression model (9). The results in Section 3 apply to the

problem of optimizing performance over θ ∈ G subject to a coverage requirement over θ ∈ F ,

where F and G are convex sets. Many constraints used in parametric models in econometrics
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lead to convex parameter sets, including restrictions on the sign and magnitude of particular

coefficients (see Andrews, 2001, and references therein).

Consider a linear functional Lβ = `′β, where ` is a k × 1 column vector. The ordered

modulus problem for ω(δ;F ,G) is

sup
β
`′(γ − θ) s.t. ‖X(γ − θ)‖ ≤ δ, γ ∈ G, θ ∈ F , (24)

which is a finite dimensional convex optimization problem. For translation invariance, we

can take ι = ι` = `/‖`‖2. In the remainder of this section, we discuss the form of optimal

procedures in some special cases (in Section 4.1), as well as implications of the results in

Section 3 for variable selection (in Section 4.2).

4.1 Examples

We solve (24) in some examples. First, we show that the problem reduces to inference based

on the ordinary least squares (OLS) estimate when the parameter space is unconstrained.

Next, we note that elliptical constraints lead to inference based on ridge regression estimates.

Finally, we consider the bivariate case and analyze how restrictions on the coefficient of one

variable affect inference on the other variable.

4.1.1 Unconstrained Parameter Space

In the unconstrained case F = G = Rk the modulus problem (24) reduces to 2 maxθ `
′θ

s.t. ‖Xθ‖ ≤ δ/2. Simple calculations involving the Lagrangian leads to the solution L̂δ =

`′(X ′X)−1X ′Y , (see Supplemental Appendix D.1 for details). Thus, L̂δ is given by applying

the linear transformation L to the OLS estimator (X ′X)−1X ′Y , regardless of δ. The worst-

case bias is zero, and the fact that the estimator minimizes variance subject to this bound on

the bias reduces to the Gauss-Markov theorem. Since the parameter space is unconstrained,

we can take ι to be any element with `′ι = 1. By centrosymmetry, the one-sided confidence

set that minimizes any quantile of excess length uniformly over the span of ι is based on L̂δ

for δ chosen appropriately. Since L̂δ does not depend on δ and the span of ι gives the entire

parameter space by varying the definition of ι, we obtain the classic result that the uniformly

most powerful test of H0 : `′θ ≤ L0 is the one-sided z-test based on the OLS estimate.

25



4.1.2 Elliptical Constraints

Suppose that F = G = {θ : ‖Mθ‖ ≤ C} for some k × k matrix M . The form of the class of

optimal estimators can again be derived by solving the Lagrangian; it is given by

L̂δ = `′(X ′X + λ̃δM
′M)−1X ′Y

where λ̃δ is given by the ratio of Lagrange multipliers (see Supplemental Appendix D.2 for

details). Note that L̂δ is obtained by applying the transformation L to the ridge regression

estimator (X ′X+λ̃δM
′M)−1X ′Y , with the regularization parameter λ̃δ depending on δ. The

minimaxity of this class of estimators for mean squared error has been noted by Li (1982).

The results in Section 3 show that minimax one-sided CIs take this form as well. In addition,

since the class F is centrosymmetric, one-sided CIs that optimize performance at θ = 0 also

take this form, and Corollaries 3.2 and 3.3 give bounds on the scope for “adapting” to θ = 0

while maintaining correct coverage over the elliptical class.

4.1.3 Sign Restrictions in the Two Parameter Case

Consider the case where k = 2, and we are interested in inference on Lθ = θ1 with θ1

unconstrained and θ2 restricted to be positive: F = R × [0,∞). For the minimax criterion

(G = F), the modulus problem is

sup
θ,γ

γ1 − θ1 s.t. (γ − θ)′X ′X(γ − θ) ≤ δ2, γ2 ≥ 0, θ2 ≥ 0.

For any θ and γ that solve this problem without the second constraint, we can add (c, c)′ to

both θ and γ for a large constant c and obtain the same value without the second constraint

binding. Thus, for G = F , the constraint on θ2 does not affect the optimal procedure.

Suppose that we wish to optimize performance over the set R × {γ̃2} for some fixed

γ̃2 > 0. Let us normalize the parameter θ so that the diagonal elements of X ′X are 1,

and let ρ be the off-diagonal element of X ′X (this reparameterizes θ as diag(X ′X)θ). The

modulus problem is

sup
θ,γ1

γ1 − θ1 s.t. (γ1 − θ1)2 + 2ρ(γ1 − θ1)(γ̃2 − θ2) + (γ̃2 − θ2)2 ≤ δ2, θ2 ≥ 0.

The constraint θ2 ≥ 0 will bind iff. dropping the constraint leads to a negative value of θ.

Dropping this constraint, the first order conditions for θ2 give −2λ(ρ(γ1−θ1)+(γ̃2−θ2)) = 0
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so that γ̃2 − θ2 = −ρ(γ1 − θ1). Thus, the unconstrained θ2 is given by θ2 = γ̃2 + ρω(δ). If

ρ > 0, the constraint will never bind, and the test will be the same as in the unconstrained

problem. If ρ < 0, the constraint will always bind when γ̃2 = 0, and the range of γ̃2 on which

the constraint binds is given by [0, |ρ|ω(δ)).

To get some intuition for this, note that, for θ̂OLS, the covariance between the estimates

of the two parameters is positive iff. ρ is negative. Thus, if ρ < 0, one can decrease the

variance of the OLS estimate θ̂OLS,1 by subtracting some fraction of θ̂OLS,2. If we maintain

the restriction θ2 ≥ 0 under the null, then this can only introduce downward bias, so we do

not need to adjust the critical value when constructing a lower CI. This strategy works for

“directing power” against γ̃2 so long as γ̃2 is not too large, so that the negative bias does not

decrease power too much under the alternative. Another source of intuition is the formula

for omitted variables bias. If ρ < 0 (the regressors are negatively correlated), then, under

the maintained hypothesis θ2 ≥ 0, ignoring the second regressor leads to downward bias,

so it is possible to form a lower CI based on the OLS estimate in the regression with the

second regressor omitted, or by using some combination of the OLS estimates of θ1 with and

without the second regressor.

4.2 Implications for Variable Selection

The results of Section 3 can be used to address the question: under what conditions does

variable selection or shrinkage make sense for confidence interval construction? Inference

after model selection has been a topic of interest in the recent econometrics and statistics

literature (see, among others, Andrews and Guggenberger, 2009a; Belloni, Chernozhukov,

and Hansen, 2014; Leeb and Pötscher, 2005; McCloskey, 2012; van de Geer, Bühlmann,

Ritov, and Dezeure, 2014; Zhang and Zhang, 2014).

If the parameter space is completely unrestricted under the null (F = Rk), then, as

discussed in Section 4.1.1, the one-sided test based on the unrestricted OLS estimator is

uniformly most powerful. This is an extremely powerful result regarding the use of anything

other than the one-sided z-test based on the unrestricted OLS estimator: even if one only

cares about power in the case where all parameters are zero except for the parameter of

interest, the optimal test still uses the unrestricted OLS estimator.

To get around this negative result, one must restrict the parameter space under the null.

Consider the case where L is a single element of the parameter vector: Lθ = θ1. Consider

inference on θ1 with the remaining parameters θ−1 = (θ2, . . . , θk)
′ ∈ Rk−1 constrained to

some set F−1 ⊆ Rk−1. This fits into our framework with F = R × F−1. If F−1 places
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nontrivial restrictions on the remaining parameters, optimal one-sided tests will, in general,

not be based on the unrestricted OLS estimator.

Suppose that we suspect that the remaining coefficients θ−1 are zero, and want to optimize

the performance of a confidence interval for this parameter value while maintaining size

control over F−1. If F−1 is centrosymmetric, then it follows from Corollary 3.2 that the

minimax one-sided CI for β quantile excess length also optimizes β̃ quantile excess length

at θ−1 = 0, where β̃ = Φ((zβ − z1−α)/2). Furthermore, Corollary 3.2 gives the relative

efficiency for the minimax one-sided CI for optimizing excess length at θ−1 = 0. For two-

sided CIs, Corollary 3.3 gives the potential improvement from optimizing expected length

at a value of (θ1, θ
′
−1)′ with θ−1 = 0 relative to fixed-length affine CIs. Note that the same

argument holds for optimizing performance at some parameter value θ̃ if the parameter space

is centrosymmetric about θ̃. For example, if one defines the parameter space by choosing a

plausible parameter value and placing symmetric bounds around it, Corollaries 3.2 and 3.3

give bounds on the scope for directing power at this parameter.

These results severely limit the scope for variable selection or other procedures that

attempt to “adapt” to particular parameter values when F−1 is convex and centrosymmet-

ric. To get around this, one must consider situations where parameters are restricted to a

non-convex or asymmetric parameter space under the null. Sparsity is one example of a

non-convex restriction under which variable selection has been used fruitfully (see Belloni,

Chernozhukov, and Hansen, 2014, for an example). If F−1 is the set of s-sparse vectors

{θ−1 : #{j : θ−1,j 6= 0} ≤ s} one can use pre-testing to find the indices of the non-zero

coefficients while controlling size. However, Corollaries 3.2 and 3.3 are relevant here as well.

While we do not need to know the location of the non-zero coefficients, we must impose

sparsity when defining size. Furthermore, Corollaries 3.2 and 3.3 can be used to bound the

scope for adapting to the level of sparsity.

Suppose that we wish to impose only s-sparsity under the null, while optimizing per-

formance when the parameter vector is p-sparse, where p < s < k. Using βth quan-

tile excess length of one-sided CIs as the performance criterion, this amounts to opti-

mizing qβ(ĉ; {θ−1 : #{j : θ−1,j 6= 0} ≤ p}) subject to 1 − α coverage of [ĉ,∞) over

{θ−1 : #{j : θ−1,j 6= 0} ≤ s}. Since the sets involved in this problem are non-convex, the

results in this paper do not apply immediately. However, relaxing the problem by assuming

that we know the indices of the nonzero components under the null and alternative can only

make the problem easier: the convex problem of optimizing qβ(ĉ; {θ−1 : θ−1,j = 0 for j > p})
subject to coverage over {θ−1 : θ−1,j = 0 for j > s} provides a lower bound. By Corol-
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laries 3.2 and 3.3, one cannot do much better at p-sparse parameters subject to coverage

over s-sparse parameters than than the minimax CI over s-sparse parameters with the non-

zero components known. Thus, for confidence interval construction, the scope for adapting

between different levels of sparsity is severely limited. The same arguments go through if

one considers approximately sparse sets of the form {θ−1 : #{j : |θ−1,j| > c} ≤ s}, or if

one considers the set of regression functions with a bound on the approximation error of

sparse linear functions. See Cai and Guo (2015) for recent work on adaptation to sparsity

in high-dimensional regression.

5 Regression discontinuity

In a (sharp) regression discontinuity (RD) design, we are interested in estimating a jump in

the regression function in the model (8) at a known threshold, which we normalize to 0, so

that throughout this section, we set

Lf = lim
x↓0

f(x)− lim
x↑0

f(x).

The threshold determines participation in a binary treatment: units with xi > 0 are treated;

units with xi < 0 are controls (we assume that xi 6= 0 for all i). If the regression functions

of potential outcomes are continuous at zero, then Lf measures the average effect of the

treatment for units with covariate values equal to the threshold.

Let f+(x) = f(x)I(x > 0) and f−(x) = −f(x)I(x < 0) so that we can write f = f+−f−.

Also let f+(0) = limx↓0 f+(x) and f−(0) = limx↑0 f−(x), so that Lf = f+(0) + f−(0). We will

assume that f lies in the class of functions

FRDT,p(C) = {f+ − f− : f+ ∈ FT,p(C;R+), f− ∈ FT,p(C;R−)} ,

where FT,p(C;X ) consists of functions f such that the approximation error from pth order

Taylor expansion of f(x) about 0 is bounded by C|x|p, uniformly over X :

FT,p(C;X ) =
{
f :
∣∣∣f(x)−

∑p−1
j=0

f (j)(0)
j!

xj
∣∣∣ ≤ C|x|p all x ∈ X

}
.

The class FT,p(C;X ) formalizes the idea that the pth derivative of f at zero should be

bounded by p!C.

Minimax estimation using this class of functions goes back at least to Legostaeva and
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Shiryaev (1971). Sacks and Ylvisaker (1978) and Cheng, Fan, and Marron (1997) considered

minimax MSE estimation of f(0) in this class of functions when 0 is a boundary point. Their

results formally justify using local polynomial regression to estimate the RD parameter.

When the degree of smoothness p is not known, Sun (2005) proposes an adaptive version

of the local polynomial estimator that achieves the optimal rate of convergence up to a

logarithmic factor. In contrast, since the class FRDT,p(C) is symmetric, Corollaries 3.2

and 3.3 imply that it is not possible to construct confidence intervals that shrink at the

optimal rate without knowing p. The researcher will therefore need to specify both p and C

to construct confidence intervals.

To illustrate the theoretical results in this section, we use the dataset from Lee (2008).

The dataset consists of 6,558 observations that correspond to elections to the US House

of Representatives between 1946 and 1998. The running variable xi ∈ [−100, 100] is the

Democratic margin of victory (in percentages) in a given election i. The outcome variable

yi ∈ [0, 100] is the Democratic vote share (in percentages) in the next election. Given

the inherent uncertainty in final vote counts, the party that wins is essentially randomized

in elections that are decided by a narrow margin, so that Lf measures the incumbency

advantage for Democrats for elections decided by a narrow margin—the impact of being the

current incumbent party in a congressional district on the probability of winning the next

election.

To implement the optimal procedures in the Lee application, we will need to use an

estimated version of σ(x)2, as the true variance function is unknown. We assume that the

variance is homoscedastic on either side of the cutoff and use the estimates σ̂2
+(x) = 14.52 and

σ̂2
−(x) = 12.52, which are based on residuals form a local linear regression with bandwidth

selected using the Imbens and Kalyanaraman (2012, IK hereafter) selector. In Section 5.5,

we show that the resulting confidence intervals will be asymptotically valid and optimal so

long as σ̂+(0) and σ̂−(0) converge to σ+(0) and σ−(0) uniformly over F , even if the true

variance function is not constant.

We use variance estimates based on the IK bandwidth for simplicity and for comparison

with the previous literature. While the optimality-within-a-class results of IK for estimating

the regression discontinuity parameter do not apply in the uniform sense considered in this

paper, the tuning parameters they use guarantee uniform convergence of the variance esti-

mate based on this bandwidth when the regression and variance functions are restricted to

an appropriate class. In Section 5.5, we show that the particulars of the variance estimate

do not matter for first order asymptotics (so long as it is uniformly consistent). On the

30



other hand, the Edgeworth expansions in Calonico, Cattaneo, and Farrell (2015) suggest

that alternative variance estimators may be preferred.

5.1 Least favorable functions

To construct optimal estimators and confidence sets, we first need to find functions g∗δ and

f ∗δ that solve the modulus problem. Since the class FRDT,p(C) is symmetric, f ∗δ = −g∗δ , and

the (single-class) modulus of continuity ω(δ;FRDT,p(C)) is given by the value of the problem

sup
f+−f−∈FRDT,p(C)

2(f+(0) + f−(0)) st
n∑
i=1

f−(xi)
2

σ2(xi)
+

n∑
i=1

f+(xi)
2

σ2(xi)
≤ δ2/4. (25)

Let g∗δ,C denote the (unique up to the values at the xis) solution to this problem. The solution

g∗δ,C can be obtained using a simple generalization of Theorem 1 of Sacks and Ylvisaker

(1978); it is characterized by a system of 2p equations in 2p unknowns. We provide details

in Supplemental Appendix D.3.

Using the fact that the class FRDT,p(C) is translation invariant (we can take ι(x) =

c0 + 1(x > 0) for any c0) and
∑n

i=1

g∗+,δ,C(xi)

σ2(xi)
=
∑n

i=1

g∗−,δ,C(xi)

σ2(xi)
(this can be seen by noting that

the bias at any constant function must be zero—otherwise the bias could be made arbitrarily

large by increasing the constant; see Supplemental Appendix D.3 for details), the class of

estimators L̂δ can be written as

L̂δ = L̂δ,FRDT,p(C) =

∑n
i=1 g

∗
+,δ,C(xi)yi/σ

2(xi)∑n
i=1 g

∗
+,δ,C(xi)/σ2(xi)

−
∑n

i=1 g
∗
−,δ,C(xi)yi/σ

2(xi)∑n
i=1 g

∗
−,δ,C(xi)/σ2(xi)

. (26)

To illustrate these results using the Lee data, we fix p = 2. Figure 3 plots the least

favorable function g∗δ,C for this data, with δ calibrated to be optimal for one-sided CIs that

minimax the excess length at the β = 0.8 quantile (so that δ = z0.95+z0.8 = 2.49), and several

choices of C. It is clear from the figure that the smoothness parameter C effectively rescales

the least favorable function while preserving its shape. Indeed, we show in Armstrong and

Kolesár (2016) that L̂δ is asymptotically equivalent to a local linear estimator with bandwidth

that depends on C and δ, and kernel for which the equivalent kernel (as defined in Fan and

Gijbels, 1996, p. 72) is given by k(u) = (3.95− 9.11u+ 4.88u2)+ − (3.95− 9.11u− 4.88u2)−

where (t)+ = max{t, 0} and (t)− = −min{t, 0}.
It is also clear from Figure 3 that the least favorable function is not smooth away from

the cutoff—indeed the Taylor class doesn’t impose smoothness of f away from cutoff, which
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may be too conservative in many applications. If one bounds the second derivative globally

by 2C, the least favorable function, derived by Gao (2016) in an asymptotic setting, has a

more smooth appearance. As we show in Armstrong and Kolesár (2016), imposing a global

bound on the second derivative tightens optimal CIs by about 10% in large samples (see also

Appendix A for a Monte Carlo study of CIs under global smoothness).

Let us briefly discuss the interpretation of the smoothness constant C in this application.

By definition of the class FRDT,2(C), C determines how large the approximation error can

be if we approximate the regression functions f+ and f− on either side of the cutoff by a

linear Taylor approximation at the cutoff: the approximation error is no greater than Cx2.

Thus, if C = 0.05, and we are predicting the vote share in the next election when the margin

of victory is, say, x = 10%, the linear approximation and the true conditional expectation

differ by at most 5%, and they differ by no more than 20% when x = 20%. Suppose that the

conditional variance is homoscedastic and equal to the IK estimate of 14.5%. Then C = 0.05

implies that the prediction MSE at can be reduced by at most 52/(14.52 + 52) = 10.6% at

x = 10%, and at most by 202/(14.52 + 202) = 65.5% at x = 20% when we use the true

regression function rather than the linear approximation. To the extent that researchers

agree that the vote share in the next election varies smoothly enough with the margin of

victory in the current election to make such large reductions in MSE unlikely, C = 0.05 is

quite a conservative choice.

5.2 Bounds on adaptation

Since the class FRDT,p(C) is centrosymmetric, Corollaries 3.2 and 3.3 apply to bound the

scope for adaptation to C. To the extent that the bounds are tight (which, as we will see

below, is indeed the case), the a priori choice of C for confidence interval construction cannot

be avoided if one is only willing to place f in the smoothness class FRDT,p(C) for some C.

Let Gp =
{

(
∑p−1

j=0 ajx
j)1(x < 0) + (

∑p−1
j=0 bjx

j)1(x > 0) : a1, a2, a3, a4 ∈ R
}

denote the

class of piecewise polynomial functions. Since for any f ∈ FRDT,p(C), g ∈ Gp, f − g ∈
FRDT,p(C), it follows from Corollary 3.2 that the efficiency of minimax CIs relative to CIs

that direct power at any subset of G0 ⊆ Gp is given by

inf ĉ : [ĉ,∞)∈Iα qβ(ĉ,G0)

qβ(ĉα,δβ ,FRDT,p(C),G0)
=

ω(2δ;FRDT,p(C))

δ2/(2
∑n

i=1 g
∗
+,δ,C(xi)/σ2(xi)) + ω(δ;FRDT,p(C))

,

with δ = z1−α + zβ. In the Lee dataset with p = 2, the relative efficiency of CIs that

minimax the 0.8 quantile is between 96% and 99.6% in for C ∈ [0.00002, 0.1]. The relative
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efficiency of CIs that minimax the median is between 96% and 99.4%. Since the optimal rate

of convergence is r = 4/5, this is very close to the asymptotic prediction 2r/(1 + r) = 96.7%.

For the fixed-length CIs, the efficiency at any g ∈ Gp is given by Corollary 3.3. In the

Lee example with p = 2 and C ∈ [0.0001, 0.1], which corresponds to a very wide range of

smoothness classes, the efficiency varies between 95.4% and 95.9%. For very small C, it

drops down to 91.3%. Unless C is extremely small, this matches the asymptotic efficiency

of 95.7% implied by Equation (22) almost exactly.

5.3 Optimal inference procedures

To construct procedures that are optimal for a given performance criterion, we need to

calibrate δ optimally. For one-sided CIs that minimax the excess length at the β quantile,

the optimal δ is given by δ = z1−α + zβ. The one-sided CI is then given by Corollary 3.1.

The optimal δ for constructing fixed-length CIs and minimax MSE estimators is given in

Theorem 3.2. We give implementation details in Supplemental Appendix D.3.

To illustrate the sensitivity of the results to the choice of C, Figure 4 plots these estimators

and confidence intervals for the Lee data for C ∈ [0.00002, 0.1]. To understand the effect of

C on the optimal amount of smoothing, we use the following definition of effective sample

size. Let L̂ =
∑n

i=1w+(xi)yi −
∑n

i=1 w−(xi)yi be a linear estimator, where the weights w+

and w− satisfy w+(x) = 0 if x < 0 and w−(x) = 0 if x > 0. Then define the effective sample

size by the variance measure of L̂ (Klemelä, 2014)

ne =
1∑n

i=1w
2
+(xi)

+
1∑n

i=1 w
2
−(xi)

. (27)

The logic behind this definition is that under homoscedasticity, the variance is given by

var(
∑n

i=1w+(xi)yi) = σ2
∑n

i=1w
2
+(xi), and similarly for the negative observations, so that

ne measures how much the variance shrinks. The results in Armstrong and Kolesár (2016)

imply that in large samples, ne = O(C−2/5) for any performance criterion (so that doubling

C reduces the effective sample size by about 25%), which predicts ne in the Lee data almost

exactly. The x-axis in Figure 4 reports ne for the minimax MSE estimator.

The range of minimax MSE estimates varies between 5.8% and 7.3% for C ∈ [0.005, 0.1],

which is close to the original Lee estimate of 7.7% that was based on a global fourth degree

polynomial. Interestingly, the lower and upper limits ĉu and ĉ` of the one-sided CIs [ĉ`,∞)

and (−∞, ĉu] are not always within the corresponding limits for the two-sided CIs. The

reason for this is that for any given C, the optimal δ is lower for one-sided CIs than for
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two-sided fixed-length CIs—it equals 2.49 for one-sided CIs independently of the value of C,

but for two-sided CIs, it varies between 4.1 and 11.7, depending on the exact value of C.

Consequently, the effective number of observations for one-sided CIs is between 3% and 22%

lower than for fixed-length CIs. Thus, when the point estimate decreases with the amount

of smoothing as is the case for low values of C, then one-sided CIs are effectively centered

around a lower estimate, which explains why at first the one-sided CI limits are both below

the two-sided limits. This reverses once the point estimate starts increasing with the amount

of smoothing.

On the other hand, the effective number of observations for the minimax MSE estimator

is very close to that for fixed-length CIs throughout the entire range of Cs, never differing by

more than 3%. This matches the asymptotic predictions in Armstrong and Kolesár (2016).

5.4 Confidence intervals based on suboptimal estimators

The minimax optimal procedures in Section 5.3 require that δ be chosen optimal for each

performance criterion. In practice, a researcher may have multiple criteria in mind for a single

estimate (e.g. one may want to report an estimator with good MSE, while also reporting a CI

centered at this estimator). How much worse is the performance of confidence intervals when

δ is not optimally chosen? Such confidence intervals can be constructed using Theorem 3.4.

Figure 5 gives the resulting confidence intervals for the Lee data, with δ chosen so that the

L̂δ is the minimax MSE estimator. In contrast with Figure 4, the limits of the one-sided CIs

are now contained within the two-sided CIs, as they are both based on the same estimator,

although they are less than (z1−α/2 − z1−α) sd(L̂δ) apart as would be the case if L̂δ were

unbiased.

The half-length of the two-sided fixed-length CI is at least 99.92% efficient relative to

choosing δ optimally for fixed-length confidence intervals over the range of Cs reported in

the graph. Similarly, the maximum excess length at the 0.8 quantile of the one-sided CIs is

at least 97.3% efficient relative to minimax optimal CI. These results are in line with the

asymptotic efficiency of confidence intervals based on the minimax MSE estimator that we

compute in Armstrong and Kolesár (2016), which imply that the asymptotic efficiency of

two-sided fixed-length CIs is 99.9%, and it is 98.0% for one-sided CIs.

Another natural question is: how much worse do CIs based on a different class of es-

timators perform? Cheng, Fan, and Marron (1997) show that local polynomial estimators

achieve high asymptotic efficiency for the minimax MSE criterion R(L̂). Consequently, these

estimators have been recommended as an attractive choice in practice (see, e.g. Imbens and
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Lemieux, 2008), and they have been very popular in recent applied work. Below, we use

the results in Section 3 to derive relative efficiency of these estimators in the finite-sample

normal model for the confidence interval criteria introduced in that section.

Consider a linear estimator

L̂lw+,w− =

∑n
i=1w+(xi)yi∑n
i=1w+(xi)

−
∑n

i=1w−(xi)yi∑n
i=1 w−(xi)

,

where the weights w+ and w− satisfy w+(−x) = w−(x) = 0 for x > 0, and
∑

iw+(xi)xi =∑
iw−(xi)xi = 0, so that the estimator is unbiased for piecewise linear functions. This

covers, in particular, local polynomial estimators of at least linear order. For instance, local

linear estimators with kernel k and bandwidths h+ and h−, use the weights

w+(x) = k+(x/h+)
n∑
i=1

k+(xi/h+)(x2 − x · xi), k+(u) = k(u)1(u > 0),

and similarly for w−.

The maximum bias of L̂lw+,w− is attained at g∗w+,w−(x) = sign(w+(x))Cx21(x > 0) −
sign(w−(x))Cx21(x < 0). This follows since any f ∈ FRDT,2(C) can be written as (a1 +

a2x+ r+(x))1(x > 0) + (a3 + a4x+ r−(x))1(x < 0), for some r+, r− such that |r±(x)| ≤ Cx2,

so that the bias of the estimator under f can be upper-bounded by the bias at g∗w+,w− . The

minimum bias attains at −g∗w+,w− . Hence,

biasFRDT,2(C)(L̂
l
w+,w−) = − biasFRDT,2(C)(L̂

l
w+,w−)

= C

∑
i|w+(xi)|x2

i∑
iw+(xi)

+ C

∑
i|w−(xi)|x2

i∑
iw−(xi)

. (28)

The variance of the estimator doesn’t depend on f and it is given by

var(L̂lw+,w−) =

∑
iw+(x+

i )2σ2(xi)

(
∑

iw+(xi))2
+

∑
iw−(xi)

2σ2(xi)

(
∑

iw−(xi))2
.

Therefore, given the weights w+ and w−, we can again use Theorem 3.4 to construct one

and two-sided CIs around L̂lw+,w− .

For local linear estimators, optimal bandwidths h+ and h− can be computed by mini-

mizing the maximum excess length (for one-sided CIs) and half-length (for fixed-length CIs)

over the bandwidths. We compute these in the Lee application using the triangular kernel.

The resulting CIs are very close to the optimal CIs in Figure 4 (see Figure S1 in Supple-
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mental Appendix H). Comparing half-length and excess length of the CIs based on local

linear estimates to the optimal CIs over the range of C reported in the graph, we find that

the two-sided CIs are at least 96.9% efficient, and one-sided CIs (based on optimizing the

0.8 quantile of excess length) are at least 96.9% efficient. This is very close to the asymp-

totic efficiency result in Armstrong and Kolesár (2016) that the local linear estimator with

a triangular kernel is 97.2% efficient, independently of the performance criterion.

5.5 Asymptotic validity

We now give a theorem showing asymptotic validity of the CIs constructed in this section

under an unknown error distribution. We consider uniform validity over regression functions

in F and error distributions in a sequence of sets Qn, and we index probability statements

with f ∈ F and Q ∈ Qn. We make the following assumptions on the xis and the class of

error distributions Qn.

Assumption 5.1. For some pX,+(0) > 0 and pX,−(0) > 0, the sequence {xi}ni=1 satisfies
1
nhn

∑n
i=1m(xi/hn)I(xi > 0) → pX,+(0)

∫∞
0
m(u) du and 1

nhn

∑n
i=1 m(xi/hn)I(xi < 0) →

pX,−(0)
∫ 0

−∞m(u) du for any bounded function m with bounded support and any hn with

0 < lim infn hnn
1/(2p+1) ≤ lim supn hnn

1/(2p+1) <∞.

Assumption 5.2. For some σ(x) with limx↓0 σ(x) = σ+(0) > 0 and limx↑0 σ(x) = σ−(0) > 0,

(i) the uis are independent under any Q ∈ Qn with EQui = 0, varQ(ui) = σ2(xi)

(ii) for some η > 0, EQ|ui|2+η is bounded uniformly over n and Q ∈ Qn.

While the variance function σ2(x) is unknown, the definition of Qn is such that the

variance function is the same for all Q ∈ Qn. This is done for simplicity. One could consider

uniformity over classes Qn that place only smoothness conditions on σ2(x) at the cost of

introducing additional notation and making the optimality statements more cumbersome.

The estimators and CIs in this section are plug-in versions of procedures in Section 3,

where an estimate σ̂(x) is used in place of the unknown true variance function. We make

the following assumption on this estimate. As discussed above, this assumption holds for

the variance estimate used here, as well as allowing for other consistent variance estimates.

Assumption 5.3. The estimate σ̂(x) is given by σ̂(x) = σ̂+(0)I(x > 0) + σ̂−(0)I(x < 0)

where σ̂+(0) and σ̂−(0) are consistent for σ+(0) and σ−(0) uniformly over f ∈ F and Q ∈ Qn.
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For asymptotic coverage, we consider uniformity over both F and Qn. Thus, a confidence

set C is said to have asymptotic coverage at least 1− α if

lim inf
n→∞

inf
f∈F ,Q∈Qn

Pf,Q (Lf ∈ C) ≥ 1− α.

Theorem 5.1. Under Assumptions 5.1, 5.2 and 5.3, the confidence intervals given in Sec-

tions 5.3 and 5.4 based on L̂δ have asymptotic coverage at least 1 − α. The confidence

intervals given in Section 5.4 based on local polynomial estimators have asymptotic coverage

at least 1−α so long as the kernel is bounded and uniformly continuous with bounded support

and the bandwidths h+ and h− satisfy h+n
1/(2p+1) → h+,∞ and h−n

1/(2p+1) → h−,∞ for some

h+,∞ > 0 and h−,∞ > 0.

Let χ̂ denote the half-length of the optimal fixed-length CI based on σ̂(x). For χ∞ given

in Supplemental Appendix G, the scaled half-length np/(2p+1)χ̂ converges in probability to χ∞

uniformly over F and Qn. If, in addition, each Qn contains a distribution where the uis are

normal, then for any sequence of confidence sets C with asymptotic coverage at least 1− α,

we have the following bound on the asymptotic efficiency improvement at any f ∈ FRDT (0):

lim inf
n→∞

sup
Q∈Qn

np/(2p+1)Ef,Qλ(C)
χ∞

≥ (1− α)E[(z1−α − Z)2p/(2p+1) | Z ≤ z1−α]

(c−1
χ (2p/(2p+ 1)))2p/(2p+1)−1χA,α(c−1

χ (2p/(2p+ 1)))

where Z ∼ N(0, 1).

Letting ĉα,δ denote the lower endpoint of the one-sided CI corresponding to L̂δ, the CI

[ĉα,δ,∞) has asymptotic coverage at least 1 − α. If δ is chosen to minimax the β quantile

excess length, (i.e. δ = zβ + z1−α), then, if each Qn contains a distribution where the uis are

normal, any other one-sided CI [ĉ,∞) with asymptotic coverage at least 1 − α must satisfy

the efficiency bound

lim inf
n→∞

supf∈F ,Q∈Qn qf,Q,β (Lf − ĉ)
supf∈F ,Q∈Qn qf,Q,β (Lf − ĉα,δ)

≥ 1.

In addition, we have the following bound on the asymptotic efficiency improvement at any

f ∈ FRDT (0):

lim inf
n→∞

supQ∈Qn qf,Q,β (Lf − ĉ)
supQ∈Qn qf,Q,β (Lf − ĉα,δ)

≥ 22p/(2p+1)

1 + 2p/(2p+ 1)
.

The proof of Theorem 5.1 is given in Supplemental Appendix G. Theorem 5.1 gives
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asymptotic validity of the plug-in optimal procedures in this section, and shows that they

are efficient when the class of possible distributions Qn contains a normal law. The latter

assumption is standard in the literature on efficiency bounds in nonparametric models (see,

e.g., Fan, 1993, pp. 205-206), and we leave the question of relaxing it for future research. The

asymptotic efficiency bounds correspond to those in Section 3 under (20) with r = 2p/(2p+1).

5.6 Comparison with other methods

A näıve, but popular approach to inference in RD is to form a nominal 100·(1−α)% CI around

a local polynomial estimator by adding and subtracting the 1− α/2 quantile of the N(0, 1)

distribution times the standard error, thereby ignoring bias. Typically, local linear estimators

are used, and the justification is based on the accuracy of a linear approximation, often with

a citation to Cheng, Fan, and Marron (1997) or other papers that consider minimax MSE in

the class FT,2(C;R+) for estimation of f(0). Thus, it is natural to consider the parameter

space FRDT,2(C) and to ask: “what is the largest value of C for which this CI has good

coverage?” Since this method ignores bias, there will always be some undercoverage, so we

formalize this by finding the largest value of C such that a nominal 95% CI has true coverage

90%. This calculation is easily done using the results in Section 3.5: the näıve approach uses

the critical value z1−.05/2 = cv.05(0) to construct a nominal 95% CI, while a valid 90% CI uses

cv.1(biasFRDT,2(C)(L̂)/se(L̂)) (where L̂ denotes the estimator and se(L̂) denotes its standard

error), so we equate these two critical values and solve for C.

The resulting value of C for which undercoverage is controlled will depend on the band-

width. If a sequence of bandwidths hn is chosen so that hnn
1/5 → 0 (the researcher makes an

“asymptotic promise” to undersmooth), this will lead to a sequence Cn that increases with

the sample size. Alternatively, if one chooses a sequence where hnn
1/5 converges to a constant

(e.g. the researcher forms a CI around the estimate that is MSE optimal for a fixed value of

C), Cn will converge to a constant as well. If the bandwidth choice is data dependent, the

estimator is non-linear and computing the value of C analytically is more complicated. We

consider this case in a Monte Carlo analysis in Appendix A. To provide a simple numerical

comparison to commonly used procedures, we consider the (data dependent) Imbens and

Kalyanaraman (2012) bandwidth ĥIK , but treat it as if it were fixed a priori. We consider

CIs based on the local linear estimator with the triangular kernel and this bandwidth, as

well as particular strategies for “undersmoothing” relative to this bandwidth.

For the Lee application, the IK bandwidth selector leads to ĥIK = 29.4. The näıve

two-sided CI based on this bandwidth is given by 7.99 ± 1.97. Treating the bandwidth as
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nonrandom, it achieves coverage of at least 90% over FRDT,2(C) as long as C ≤ Cnäıve =

0.0022. This is a rather low value, implying that even when x = 20%, the prediction error

based on a linear Taylor approximation to f differs at most by 0.9% from the true conditional

expectation.

To deal with the coverage problem of the näıve CI (or, equivalently, to relax the high

level of smoothness it requires), a popular approach is to undersmooth. As discussed above,

this leads to a sequence Cn →∞ under which size distortion is controlled by a given amount,

and our methods can be used to compute this sequence. Another popular approach is to

subtract an estimate of the bias. In an important paper, Calonico, Cattaneo, and Titiunik

(2014) link these two approaches in the context of RD. They derive a novel standard error

formula that accounts for the additional variability introduced by the estimated bias, and

show that if the pilot bandwidth and the kernel used by the bias estimator equal those used

by the local linear estimator of Lf , their procedure amounts to running a quadratic instead

of a linear local regression, and then using the usual CI. In the Lee application, this method

delivers the CI 6.68± 2.91, increasing the half-length substantially relative to the näıve CI.

This increase is due to the fact that a local quadratic estimator uses a much smaller effective

sample size than a local linear estimator at the same bandwidth resulting in 330 and 718

effective observations, respectively. The maximum smoothness parameter under which these

CIs have coverage at least 90% is given by CCCT = 0.0027, which is larger than Cnäıve. By

way of comparison, the optimal 95% fixed-length CIs at CCCT leads to a much narrower CI

given by 7.59± 2.36.

While the CCT CI maintains good coverage for a larger smoothness constant than the

näıve CI (CCCT > Cnäıve), both constants are rather small (equivalently, coverage is bad

for moderate values of C). This is an artifact of the large realized value of ĥIK : the CCT

CI essentially “undersmooths” relative to a given bandwidth by making the bias-standard

deviation ratio smaller. Since ĥIK is large to begin with, the amount of undersmoothing is

not enough to make the procedure robust to moderate values of C. In fact, the IK bandwidth

is generally quite sensitive to tuning parameter choices: we show in a Monte Carlo study in

Appendix A that the CCT implementation of the IK bandwidth yields smaller bandwidths

and achieves good coverage over a much larger set of functions, at the cost of larger length.

In finite samples, the tuning parameters drive the maximum bias of the estimator, and

hence its coverage properties, even though under standard pointwise asymptotics, the tuning

parameters shouldn’t affect coverage.

In contrast, if one performs the CCT procedure starting from a minimax MSE optimal
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bandwidth based on a known smoothness constant C, the asymptotic coverage will be quite

good (above 94%), although the CCT CI ends up being about 30% longer than the optimal

CI (see Armstrong and Kolesár, 2016). Thus, while using a data driven bandwidth selector

such as IK for inference can lead to severe undercoverage for smoothness classes used in RD

(even if one undersmooths or bias-corrects as in CCT), procedures such as CCT can have

good coverage if based on an appropriate bandwidth choice that is fixed ex ante.

6 Conclusion

This paper considered the problem of constructing one- and two-sided confidences intervals

for a linear functional of an unknown regression function f in a broad class of regression

models under the assumption that f lies in a convex function class F . We showed that,

when F is centrosymmetric, one-sided CIs that minimax a given quantile of excess length

that we derive here are also highly efficient at smooth functions relative to CIs that optimize

excess length at these smooth functions. Likewise, the fixed-length two-sided CIs of Donoho

(1994) are shown to be highly efficient relative to confidence sets that optimize expected

length at smooth functions. Both types of CIs are simple to construct. They require an

explicit choice of the function class F , which sometimes involves placing an explicit bound

the smoothness of f . The above efficiency results imply, however, that specifying this bound

can only be avoided at the expense of sacrificing coverage.
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Appendix A Monte Carlo evidence

Corollaries 3.2 and 3.3 imply that confidence intervals based on data-driven bandwidths

must either undercover or else cannot be shorter than fixed-length confidence intervals that

assume worst-case smoothness. In this appendix, we illustrate this implication with a Monte

Carlo study in the context of inference in a sharp regression discontinuity design.

As in Section 5, the data are generated from the nonparametric regression model yi =

f(xi) + ui, and the parameter of interest is the jump in the regression function at zero,

Lf = limx↓0 f(x)− limx↑0 f(x). To help separate the difficulty in constructing CIs for Lf due

to unknown smoothness of f from that due to irregular design points or heteroscedasticity,

for all designs below, the distribution of xi is uniform on [−1, 1], and ui is independent of

xi, distributed N (0, σ2). The sample size is n = 500 in each case.

For σ2, we consider two values, σ2 = 0.1295, and σ2 = 4× 0.1295 = 0.518. We consider

conditional mean functions f that lie in the smoothness class

FRDH,2(C) = {f+ − f− : f+ ∈ FH,2(C;R+), f− ∈ FH,2(C;R−)} ,

where FH,p(C;X ) is the second-order Hölder class, the closure of twice-differentiable func-

tions with second derivative bounded by 2C, uniformly over X :

FH,p(C;X ) = {f : |f ′(x1)− f ′(x2)| ≤ 2C|x1 − x2| all x1, x2 ∈ X} .

Unlike the class FRDT,2(C) considered in Section 5, the class FRDH,2(C) also imposes smooth-

ness away from the cutoff, so that FRDH,2(C) ⊆ FRDT,2(C). Imposing smoothness away from

the cutoff is natural in many empirical applications. We consider C = 1 and C = 3, and for

each C, we consider 4 different shapes for f . In each case, f is odd, f+ = −f−. In Designs

1 through 3, f+ is given by a quadratic spline with two knots, at b1 and b2,

f+(x) = 1(x > 0) · C
(
x2 − 2(x− b1)2

+ + 2(x− b2)2
+

)
.

In Design 1 the knots are given by (b1, b2) = (0.45, 0.75), in Design 2 by (0.25, 0.65), and in

Design 3 by (0.4, 0.9). The function f+(x) is plotted in Figure 6 for C = 1. For C = 3, the

function f is identical up to scale. It is clear from the figure that although locally to the

cutoff, the functions are identical, they differ away from the cutoff (for |x| ≥ 0.25), which, as

we demonstrate below, affects the performance of data-driven methods. Finally, in Design

4, we consider f(x) = 0 to allow us to compare the performance of CIs when f is as smooth
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as possible.

We consider four methods for constructing CIs based on data-driven bandwidths, and

two fixed-length CIs. All CIs are based on local polynomial regressions with a triangular

kernel. The variance estimators used to construct the CIs are heteroscedasticity-robust and

based on the nearest neighbor method proposed by Abadie and Imbens (2006) in a different

context. This method was also studied in Calonico, Cattaneo, and Titiunik (2014) in an RD

setting. The results based on Eicker-Huber-White variance estimators are very similar and

not reported here.

The first two methods correspond to näıve CIs based on local linear regression described

in Section 5.6. The first CI uses Imbens and Kalyanaraman (2012, IK) bandwidth selector

ĥIK , and the second CI uses a bandwidth selector proposed in Calonico, Cattaneo, and

Titiunik (2014, CCT), ĥCCT . The third CI uses the robust bias correction (RBC) studied in

CCT, with both the pilot and the main bandwidth given by ĥIK (the main estimate is based

on local linear regression, and the bias correction is based on local quadratic regression), so

that the bandwidth ratio is given by ρ = 1. The fourth CI is also based on RBC, but with

the main and pilot bandwidth potentially different and given by the Calonico, Cattaneo, and

Titiunik (2014) bandwidth selectors. Finally, we consider two fixed-length CIs with uniform

coverage under the class FRDH,2(C), with C = 1, 3, and bandwidth chosen to minimize their

half-length. Their construction is similar to the CIs considered in Section 5.4, except they

use the fact that under FRDH,2(C), the maximum bias for local linear estimators based on

a fixed bandwidth is attained at g∗(x) = Cx21(x > 0) − Cx21(x < 0) (see Armstrong and

Kolesár, 2016, for derivation).

The results are reported in Tables 2 for C = 1 and 3 for C = 3. One can see from the

tables that CIs based on ĥIK may undercover severely even at the higher level of smoothness,

C = 1. In particular, the coverage of näıve CIs based on ĥIK is as low as 10.1% for 95%

nominal CIs in Design 1, and the coverage of RBC CIs is as low as 64.4%, again in Design

1. The undercoverage is even more severe when C = 3.

In contrast, CIs based on the CCT bandwidth selector perform much better in terms

of coverage under C = 1, with coverage over 90% for all designs. These CIs only start

undercovering once C = 3, with 80.7% coverage in Design 3 for näıve CIs, and 86.2%

coverage for RBC CIs. The cost for the good coverage properties, as can be seen from the

tables, is that the CIs are longer, sometimes much longer than optimal fixed-length CIs. As

discussed in Section 5.6, the dramatically different coverage properties of the CIs based on

the IK and CCT bandwidths illustrates the point that the coverage of CIs based on data-
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driven bandwidths is governed by the tuning parameters used in defining the bandwidth

selector.

Appendix B Proofs for main results

This section contains proofs of the results in Section 3. Section B.1 contains auxiliary lemmas

used in the proofs. The proofs of the results in Section 3 are given in the remainder of the

section. Section B.2 contains the proof of Theorem 3.1. Section B.3 contains the proof of

Theorem 3.3. The corollaries to these theorems follow immediately from the theorems and

arguments in the main text, and their proofs are omitted from this section. Theorem 3.4

is immediate from Lemma B.1 below (which, as discussed below, reduces to Lemma 4 in

Donoho (1994) in this case, since G = F).

Before proceeding, we recall that ω′(δ;F ,G) was defined in Section 3 to be an arbi-

trary element of the superdifferential. Here, we introduce notation to denote this set. The

superdifferential is defined as

∂ω(δ;F ,G) = {d : for all η > 0, ω(η;F ,G) ≤ ω(δ;F ,G) + d(η − δ)} .

It is nonempty since ω(·;F ,G) is concave (if f ∗δ , g
∗
δ attain the modulus at δ and similarly for

δ̃, then, for λ ∈ [0, 1], fλ = λf ∗δ + (1− λ)f ∗
δ̃

and gλ = λg∗δ + (1− λ)g∗
δ̃

satisfy ‖K(gλ− fλ)‖ ≤
λδ + (1− λ)δ̃ so that ω(λδ + (1− λ)δ̃) ≥ Lgλ − Lfλ = λω(δ) + (1− λ)ω(δ̃)).

B.1 Auxiliary Lemmas

The following lemma extends Lemma 4 in Donoho (1994) to the two class modulus (see also

Theorem 2 in Cai and Low, 2004b, for a similar result in the Gaussian white noise model).

The proof is essentially the same as for the single class case.

Lemma B.1. Let f ∗ and g∗ solve the optimization problem for ω(δ0;F ,G) with ‖K(f ∗ −
g∗)‖ = δ0, and let d ∈ ∂ω(δ0;F ,G). Then, for all f ∈ F and g ∈ G,

Lg − Lg∗ ≤ d
〈K(g∗ − f ∗), K(g − g∗)〉

‖K(g∗ − f ∗)‖
and Lf − Lf ∗ ≥ d

〈K(g∗ − f ∗), K(f − f ∗)〉
‖K(g∗ − f ∗)‖

. (29)

In particular, the test statistic L̂δ,F ,G achieves maximum bias over F at f ∗ and minimum

bias over G at g∗.
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Proof. In this proof, we use ω(δ) to denote the ordered modulus ω(δ;F ,G). Suppose that

the first inequality does not hold for some g. Then, for some ε > 0,

Lg − Lg∗ > (d+ ε)
〈K(g∗ − f ∗), K(g − g∗)〉

‖K(g∗ − f ∗)‖
. (30)

Let gλ = (1− λ)g∗ + λg. Since gλ − g∗ = λ(g − g∗), multiplying by λ gives

Lgλ − Lg∗ > λ(d+ ε)
〈K(g∗ − f ∗), K(g − g∗)〉

‖K(g∗ − f ∗)‖
.

The left hand side is equal to Lgλ−Lf ∗−L(g∗− f ∗) = Lgλ−Lf ∗−ω(δ0). Since gλ ∈ G by

convexity, Lgλ − Lf ∗ ≤ ω(‖K(gλ − f ∗)‖). Note that

d

dλ
‖K(gλ − f ∗)‖

∣∣∣∣
λ=0

=
1

2

d
dλ
‖K(gλ − f ∗)‖2

∣∣∣∣
λ=0

‖K(g∗ − f ∗)‖
=
〈K(g∗ − f ∗), K(g − g∗)〉

‖K(g∗ − f ∗)‖
(31)

so that ‖K(gλ − f ∗)‖ = δ0 + λ 〈K(g∗−f∗),K(g−g∗)〉
‖K(g∗−f∗)‖ + o(λ). Putting this all together, we have

ω

(
δ0 + λ

〈K(g∗ − f ∗), K(g − g∗)〉
‖K(g∗ − f ∗)‖

+ o(λ)

)
> ω(δ0) + λ(d+ ε)

〈K(g∗ − f ∗), K(g − g∗)〉
‖K(g∗ − f ∗)‖

,

which is a contradiction unless 〈K(g∗ − f ∗), K(g − g∗)〉 = 0.

If 〈K(g∗ − f ∗), K(g − g∗)〉 = 0, then (30) gives Lg − Lg∗ > 0, which implies

ω(‖K(gλ − f ∗)‖) ≥ Lgλ − Lf ∗ = λc+ ω(δ0)

where c = Lg − Lg∗ > 0. But in this case (31) implies ‖K(gλ − f ∗)‖ = δ0 + o(λ), again

giving a contradiction. This proves the first inequality, and a symmetric argument applies

to the inequality involving Lf − Lf ∗, thereby giving the first result.

Now consider the test statistic L̂δ,F ,G. Under g ∈ G, the bias of this statistic is equal to

a constant that does not depend on g plus

d
〈K(g∗ − f ∗), K(g − g∗)〉

‖K(g∗ − f ∗)‖
− (Lg − Lg∗).

It follows from (29) that this is minimized over g ∈ G by taking g = g∗. Similarly, the

maximum bias over F is taken at f ∗.
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The next lemma is a result from the literature on nonparametric testing. It is used in

the proof of Theorem 3.3.

Lemma B.2. Let F̃ and G̃ be convex sets, and suppose that f ∗ and g∗ minimize ‖K(f −g)‖
over f ∈ F̃ and g ∈ G̃. Then, for any level α, the minimax test of H0 : F̃ vs H1 : G̃ is given

by the Neyman-Pearson test of f ∗ vs g∗. It rejects when 〈K(f ∗ − g∗), Y 〉 is greater than its

1− α quantile under f ∗. The minimum power of this test over G̃ is taken at g∗.

Proof. The result is immediate from results stated in Section 2.4.3 in Ingster and Suslina

(2003), since the sets {Kf : f ∈ F̃} and {Kg : g ∈ G̃} are convex.

The following lemma derives the form of the derivative of ω under translation invariance,

and is used in deriving the form of L̂δ given in the main text.

Lemma B.3. Let f ∗ and g∗ solve the modulus problem with δ0 = ‖K(g∗ − f ∗)‖ > 0,

and suppose that f ∗ + cι ∈ F for all c in a neighborhood of zero, where Lι = 1. Then

∂ω(δ0;F ,G) =
{

δ0
〈K(g∗−f∗),Kι〉

}
.

Proof. Let d ∈ ∂ω(δ0;F ,G) and let fc = f ∗ − cι. Let η be small enough so that fc ∈ F for

|c| ≤ η. Then, for |c| ≤ η,

L(g∗ − f ∗) + d [‖K(g∗ − fc)‖ − δ0] ≥ ω(‖K(g∗ − fc)‖;F ,G) ≥ L(g∗ − fc) = L(g∗ − f ∗) + c

where the first inequality follows from the definition of the superdifferential and the second

inequality follows from the definition of the modulus. Since the left hand side of the above

display is greater than or equal to the right hand side of the display for c in a neighborhood

of zero, and the two sides are equal at c = 0, the derivatives of both sides with respect to c

must be equal. The result follows since

d

dc
‖K(g∗ − fc)‖

∣∣∣∣
c=0

=

d
dc
‖K(g∗ − fc)‖2

∣∣∣∣
c=0

2δ0

=
〈K(g∗ − f ∗), Kι〉

δ0

.
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B.2 Proof of Theorem 3.1

For ease of notation in this proof, let f ∗ = f ∗δ and g∗ = g∗δ denote the functions that solve

the modulus problem with ‖K(f ∗ − g∗)‖ = δ, and let d = ω′(δ;F ,G) ∈ ∂ω(δ;F ,G) so that

ĉα = ĉα,δ,F ,G = Lf ∗ + d
〈K(g∗ − f ∗), KY 〉
‖K(g∗ − f ∗)‖

− d〈K(g∗ − f ∗), Kf ∗〉
‖K(g∗ − f ∗)‖

− z1−ασd.

Note that ĉα = L̂δ,F ,G + a for a chosen so that the 1 − α quantile of ĉα − Lf ∗ under f ∗

is zero. Thus, it follows from Lemma B.1 that [ĉα,∞) is a valid 1 − α CI for Lf over F ,

and that all quantiles of excess coverage Lg − ĉα are maximized over G at g∗. In particular,

qβ(ĉα;G) = qg∗,β(Lg∗ − ĉα). To calculate this, note that, under g∗, Lg∗ − ĉα is normal with

variance d2σ2 and mean

Lg∗ − Lf ∗ − d〈K(g∗ − f ∗), K(g∗ − f ∗)〉
‖K(g∗ − f ∗)‖

+ z1−ασd = ω(δ;F ,G) + d(z1−ασ − δ).

The probability that this normal variable is less than or equal to ω(δ;F ,G) is given by the

probability that a normal variable with mean d(z1−ασ− δ) and variance d2σ2 is less than or

equal to zero, which is Φ(δ/σ − z1−α) = β. Thus qβ(ĉα;G) = ω(δ;F ,G) as claimed.

It remains to show that no other 1 − α CI can strictly improve on this. Suppose that

some other 1 − α CI [c̃,∞) obtained a strictly shorter βth quantile of excess length for all

g ∈ G. Applying this with g = g∗, we would have, for some η > 0,

Pg∗(Lg∗ − c̃ ≤ ω(δ;F ,G)− η) ≥ β.

Let f̃ be given by a convex combination between g∗ and f ∗ such that Lg∗−Lf̃ = ω(δ;F ;G)−
η/2. Then the above display gives

Pg∗(c̃ > Lf̃) ≥ Pg∗(c̃ ≥ Lf̃ + η/2) = Pg∗(Lg∗ − c̃ ≤ Lg∗ − Lf̃ − η/2) ≥ β.

But this would imply that the test that rejects when c̃ > Lf̃ is level α for H0 : f̃ and has

power β at g∗. This can be seen to be impossible by calculating the power of the Neyman-

Pearson test of f̃ vs g∗, since β is the power of the Neyman-Pearson test of f ∗ vs g∗, and f̃

is a strict convex combination of these functions.
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B.3 Proof of Theorem 3.3

Following Pratt (1961), note that, for any confidence set C for ϑ = Lf , we have

Egλ(C) = Eg

∫
(1− φC(ϑ)) dϑ =

∫
Eg(1− φC(ϑ)) dϑ

by Fubini’s theorem, where φC(ϑ) = I(ϑ /∈ C). Thus, the CI that minimizes this inverts the

family of most powerful tests of H0 : Lf = ϑ, f ∈ F against H1 : f = g. By Lemma B.2 since

the sets {f : Lf = ϑ, f ∈ F} and {g} are convex, the least favorable function fϑ minimize

‖K(g − f)‖ subject to Lf = ϑ, which gives the first part of the theorem.

To derive the expression for expected length, note that if Lg ≤ ϑ, then the minimization

problem is equivalent to solving the inverse ordered modulus problem ω−1(ϑ− Lg; {g} ,F),

and if Lg ≥ ϑ, it is equivalent to solving ω−1(Lg − ϑ;F , {g}). This follows because if the

ordered modulus ω(δ;F , {g}) attained at some f ∗δ and g, then the inequality ‖K(f − g)‖ ≤
δ must be binding: otherwise a convex combination of f̃ and f ∗δ , where f̃ is such that

L(g − f ∗δ ) < L(g − f̃) would achieve a strictly larger value, and similarly for ω(δ; {g} ,F).

Such f̃ always exists since by the assumption that fϑ exists for all ϑ. Consequently, it also

follows that that the modulus and inverse modulus are strictly increasing.

Next, it follows from the proof of Theorem 3.1 that the power of the test φϑ at g is given

by Φ(δϑ/σ − z1−α). Therefore,

Eg[λ(Cg(Y ))] =

∫
Φ

(
z1−α −

δϑ
σ

)
dϑ

=

∫∫
1 (δϑ ≤ σ(z1−α − z)) dϑ dΦ(z),

where the second line swaps the order of integration. Splitting the inner integral, using fact

that δϑ = ω−1(Lg − ϑ;F , {g}) for ϑ ≤ Lg and δϑ = ω−1(ϑ − Lg; {g} ,F) for ϑ ≥ Lg, and

taking a modulus on both sides of the inequality of the integrand then yields

Eg[λ(Cg(Y ))] =

∫∫
ϑ≤Lg

1 (Lg − ϑ ≤ ω (σ(z1−α − z);F , {g})) 1(z ≤ z1−α) dϑ dΦ(z)

+

∫∫
ϑ>Lg

1 (ϑ− Lg ≤ ω (σ(z1−α − z); {g} ,F)) 1(z ≤ z1−α) dϑ dΦ(z)

= (1− α)E [(ω(σ(z1−α − Z);F , {g}) + ω(σ(z1−α − Z); {g} ,F)) | Z ≤ z1−α] ,

where Z is standard normal, which yields the result.
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Appendix C Fixed-length CIs in the bounded normal

mean model

Let Z ∼ N(µ, 1), with µ ∈ [−τ, τ ]. Consider first the problem of finding an affine estimator

µ̂ = b + cY that maximizes the coverage of the confidence intervals µ̂ ± χ, with χ given.

This problem is equivalent to minimizing the maximum risk under the 0–1 loss `0–1,χ(µ̂, µ) =

1(|µ̂ − µ| ≥ χ)). By symmetry, it is clear that b = 0 is optimal. The coverage of a linear

estimator cZ if c 6= 0 is

1− sup
|µ|≤τ

Eµ[`0–1,χ(cZ, µ)] = Φ

(
τ + χ

c
− τ
)
− Φ

(
τ − χ
c
− τ
)
. (32)

Drees (1999) shows that the affine estimator that is minimax for the 0–1 loss is given by

c0–1,χ(τ) =


(

1/2 +

√
1
4

+ 1
2τχ

log
(
τ+χ
τ−χ

))−1

if χ < τ ,

0 otherwise.

so that the coverage is 1 if χ ≥ τ and it is given by (32) otherwise. Hence, the shortest

fixed-length 1 − α affine confidence interval is given by cχ(τ)Z ± χA,α(τ), where cχ(τ) =

c0–1,χA,α(τ)(τ), and χA,α(τ) solves E[`0–1,χ(c0–1,χ(τ))] = α if τ ≥ Φ−1(1− α), and χA,α(τ) = τ

otherwise.
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α

b 0.01 0.05 0.1

0.0 2.576 1.960 1.645
0.1 2.589 1.970 1.653
0.2 2.626 1.999 1.677
0.3 2.683 2.045 1.717
0.4 2.757 2.107 1.772
0.5 2.842 2.181 1.839
0.6 2.934 2.265 1.916
0.7 3.030 2.356 2.001
0.8 3.128 2.450 2.093
0.9 3.227 2.548 2.187
1.0 3.327 2.646 2.284
1.5 3.826 3.145 2.782
2.0 4.326 3.645 3.282

Table 1: Critical values cvα(b) for selected confidence levels and values of maximum absolute
bias b. For b ≥ 2, cvα(b) ≈ b+ z1−α up to 3 decimal places for these values of α.
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σ2 = 0.1295 σ2 = 4 · 0.1295

CI method Cov. (%) Bias RL Cov. (%) Bias RL

Design 1, (b1, b2) = (0.45, 0.75)

Näıve, ĥIK 10.1 -0.098 0.54 81.7 -0.099 0.72

RBC, ĥIK , ρ = 1 64.4 -0.049 0.80 93.9 -0.050 1.06

Näıve, ĥCCT 91.2 -0.010 1.01 92.7 -0.010 1.26

RBC, ĥCCT 93.7 0.003 1.18 93.6 0.007 1.49

FLCI, C = 1 94.6 -0.023 1 94.8 -0.069 1

FLCI, C = 3 96.6 -0.009 1.25 96.4 -0.028 1.25

Design 2, (b1, b2) = (0.4, 0.9)

Näıve, ĥIK 54.2 -0.063 0.68 89.6 -0.085 0.77

RBC, ĥIK , ρ = 1 94.8 -0.006 1.00 95.9 -0.043 1.13

Näıve, ĥCCT 91.4 -0.009 1.02 92.7 -0.009 1.26

RBC, ĥCCT 93.6 0.003 1.19 93.6 0.007 1.49

FLCI, C = 1 94.6 -0.023 1 95 -0.065 1

FLCI, C = 3 96.6 -0.009 1.25 96.4 -0.028 1.25

Design 3, (b1, b2) = (0.25, 0.65)

Näıve, ĥIK 87.8 -0.030 0.74 91.4 -0.009 0.76

RBC, ĥIK , ρ = 1 94.8 -0.014 1.09 95.0 -0.044 1.12

Näıve, ĥCCT 90.9 -0.014 0.97 92.8 -0.013 1.25

RBC, ĥCCT 92.2 -0.009 1.14 93.5 -0.007 1.48

FLCI, C = 1 94.8 -0.022 1 96.5 -0.028 1

FLCI, C = 3 96.6 -0.009 1.25 96.5 -0.025 1.25

Design 4, f(x) = 0

Näıve, ĥIK 93.2 0.000 0.54 93.2 -0.001 0.72

RBC, ĥIK , ρ = 1 95.2 0.000 0.80 95.2 0.001 1.06

Näıve, ĥCCT 93.1 0.001 0.94 93.1 0.003 1.25

RBC, ĥCCT 93.5 0.001 1.12 93.5 0.004 1.48

FLCI, C = 1 96.8 0.001 1 96.9 0.000 1

FLCI, C = 3 96.8 0.001 1.25 96.7 0.002 1.25

Table 2: Monte Carlo simulation, C = 1. Coverage (“Cov”) and relative length relative
to optimal fixed-length confidence interval for FRDH,2(1) (“RL”). “Bias” refers to bias of
estimator around which CI is centered. 11,000 simulation draws.
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σ2 = 0.1295 σ2 = 4 · 0.1295

CI method Cov. (%) Bias RL Cov. (%) Bias RL

Design 1, (b1, b2) = (0.45, 0.75)

Näıve, ĥIK 0.1 -0.292 0.45 22.4 -0.296 0.58

RBC, ĥIK , ρ = 1 27.1 -0.127 0.65 77.8 -0.149 0.85

Näıve, ĥCCT 89.3 -0.019 0.94 91.6 -0.031 1.05

RBC, ĥCCT 93.7 0.004 1.06 93.7 0.012 1.22

FLCI, C = 1 71.5 -0.071 0.80 73.5 -0.208 0.80

FLCI, C = 3 94.3 -0.029 1 94.6 -0.088 1

Design 2, (b1, b2) = (0.4, 0.9)

Näıve, ĥIK 60.0 -0.071 0.71 71.4 -0.193 0.72

RBC, ĥIK , ρ = 1 93.5 0.000 1.04 95.1 -0.020 1.06

Näıve, ĥCCT 89.7 -0.018 0.95 91.7 -0.029 1.05

RBC, ĥCCT 93.6 0.004 1.09 93.6 0.012 1.24

FLCI, C = 1 71.5 -0.071 0.80 76.4 -0.195 0.80

FLCI, C = 3 94.3 -0.029 1 94.6 -0.088 1

Design 3, (b1, b2) = (0.25, 0.65)

Näıve, ĥIK 79.9 -0.052 0.76 89.2 -0.085 0.73

RBC, ĥIK , ρ = 1 93.3 0.001 1.13 94.6 -0.072 1.07

Näıve, ĥCCT 80.7 -0.032 0.87 91.8 -0.042 1.01

RBC, ĥCCT 86.2 -0.017 1.00 92.7 -0.027 1.20

FLCI, C = 1 74.0 -0.068 0.8 93.8 -0.083 0.80

FLCI, C = 3 94.3 -0.029 1 95.1 -0.078 1

Design 5, f(x) = 0

Näıve, ĥIK 93.2 0.000 0.43 93.2 -0.001 0.57

RBC, ĥIK , ρ = 1 95.2 0.000 0.64 95.2 0.001 0.85

Näıve, ĥCCT 93.1 0.001 0.75 93.1 0.003 1.00

RBC, ĥCCT 93.5 0.001 0.89 93.5 0.004 1.18

FLCI, C = 1 96.8 0.001 0.80 96.9 0.000 0.80

FLCI, C = 3 96.8 0.001 1 96.7 0.002 1

Table 3: Monte Carlo simulation, C = 3. Coverage (“Cov”) and relative length relative
to optimal fixed-length confidence interval for FRDH,2(1) (“RL”). “Bias” refers to bias of
estimator around which CI is centered. 11,000 simulation draws.
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Figure 1: Least favorable null and alternative functions in the simple example for the mini-
max test (left), and test that directs power at constant alternatives (right).
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Figure 2: Asymptotic efficiency bounds for one-sided and fixed-length confidence intervals
as function of the optimal rate of convergence r under centrosymmetry. Minimax one-sided
refers to ratio of β-quantile of excess length of CIs that direct power at smooth functions
relative to minimax one-sided CIs given in (19). Shortest fixed-length refers the ratio of
expected length of CIs that direct power at a given smooth function relative to shortest
fixed-length affine CIs given in (22).
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Figure 3: Least favorable function g∗δ,C that solves the modulus problem for in the class
FRDT,2(C) in the Lee (2008) RD example for different values of the smoothness parameter
C. δ = 2.49, which is optimal for constructing minimax one-sided 95% CIs at 0.8 quantile.
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Figure 4: Lee (2008) RD example: minimax MSE estimator (estimator), lower and upper
limits of minimax one-sided confidence intervals for 0.8 quantile (one-sided), and fixed-length
CIs (two-sided) as function of smoothness C. Effective number of observations corresponds
to ne for the minimax MSE estimator as defined in Equation (27) in the text.
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Figure 5: Lee (2008) RD example: minimax MSE estimator (estimator) with two-sided
CI (two-sided) as well as lower and upper limits of one-sided CIs around it as function of
smoothness C. Effective number of observations corresponds to ne for the minimax MSE
estimator as defined in Equation (27) in the text.
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Figure 6: Regression function for Monte Carlo simulation, Designs 1–3, and C = 1. Knots
b1 = 0.45, b2 = 0.75 correspond to Design 1, b1 = 0.4, b2 = 0.9 to Design 2, and b1 =
0.25, b2 = 0.65 to Design 3.
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