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Abstract

IO economists often estimate demand for differentiated products using data sets

with a small number of large markets. This paper addresses the question of consis-

tency and asymptotic distributions of IV estimates as the number of products increases

in some commonly used models of demand under conditions on economic primitives.

I show that, in a Bertrand-Nash equilibrium, product characteristics lose their identi-

fying power as price instruments in the limit in certain cases, leading to inconsistent

estimates. The reason is that product characteristic instruments achieve identification

through correlation with markups, and, depending on the model of demand, the sup-

ply side can constrain markups to converge to a constant quickly relative to sampling

error. I find that product characteristic instruments can yield consistent estimates in

many of the cases I consider, but care must be taken in modeling demand and choosing

instruments. A Monte Carlo study confirms that the asymptotic results are relevant

in market sizes of practical importance.

1 Introduction

The simultaneous determination of quantity and prices is a classic problem in demand esti-

mation. A common solution in markets with differentiated products is to use characteristics

∗Email: timothy.armstrong@yale.edu. Thanks to Han Hong and Liran Einav for guidance and many
useful discussions, and Ariel Pakes, John Lazarev, Steve Berry, Phil Haile and participants at seminars at
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of competing products as a source of exogenous variation in prices. The idea is that a firm

facing stiffer competition will set lower markups, so, as long as they are independent of de-

mand shocks, characteristics of competing products will be valid instruments for a product’s

price. The use of characteristics of competing products as price instruments is common in

empirical studies of differentiated product markets, and goes back at least to Bresnahan

(1987) and Berry, Levinsohn, and Pakes (1995) (hereafter, BLP). I refer to instruments of

this form as product characteristic instruments or, in reference to the latter paper, “BLP

instruments.” See footnote 1 below for more recent references that use BLP instruments.

Many empirical studies of markets with differentiated products, including those that use

the BLP instruments, use data on a relatively small number of markets, each with many

products, to estimate demand elasticities. For example, in their application to automobile

demand, BLP use data on 20 markets, each with about 100 products.1 For demand models

where the number of parameters grows with the number of product characteristics rather

than the number of products, one might expect a small number of markets with a large

number of products to give good estimates of demand.

This paper uses asymptotic approximations where asymptotics are taken in the number

of products per market to examine the behavior of IV estimators of demand in large market

settings, with a focus on product characteristic based instruments. Since the BLP instru-

ments are correlated with prices only through equilibrium markups, their validity in this

setting depends crucially on the nature of competition in markets with many products. If

the dependence of markups on characteristics of other products disappears as the number of

products increases and does so quickly enough, the BLP instruments will lose power in large

markets and estimates based on them will be inconsistent when asymptotics are taken with

respect to the number of products per market. The results in this paper use the asymptotic

behavior of equilibrium markups to determine when this is the case.

I find that, in certain cases, the dependence of prices on product characteristic instru-

ments through markups disappears at a fast enough rate that the BLP instruments lead to

inconsistent estimates when asymptotics are taken in the number of products per market.

In particular, this is the case with the logit and random coefficients logit models when the

number of products increases with the number of markets and products per firm fixed.2

1In addition to BLP and other papers on the automobile industry (e.g. Petrin, 2002), examples of indus-
tries with data that fit this description include personal computers (e.g. Eizenberg, 2011; Bresnahan, Stern,
and Trajtenberg, 1997), LCD televisions (e.g. Conlon, 2012) and other consumer goods sold at a national
level. Of these papers, Bresnahan, Stern, and Trajtenberg (1997) use BLP instruments exclusively, while
the others use a combination of BLP and cost instruments.

2The random coefficients model considered in this paper does not allow a random coefficient on price.
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Despite this negative result, I show that, in other settings, the dependence of markups on

product characteristics remains or decreases slowly enough that the BLP instruments lead

to consistent estimates under large market asymptotics. Under certain conditions, the BLP

instruments lead to consistent estimates under logit demand when the number of products

increases with the number of firms fixed, so long as firms are asymmetric. The asymptotic

dependence of the markup on product characteristics can also be obtained when the number

of products increases with the number of products per firm fixed if the dimension of the space

of observed product characteristics increases with the number of products (but with enough

restrictions that the dimension of the parameter space does not). I illustrate this point

with a nested logit model with many nests. Finally, considering the case with many large

markets, the BLP instruments will lead to consistent estimates in certain cases if the number

of markets increases quickly enough relative to the number of products in each market.

This paper gives a negative result for any setting where (1) the number of products

increases with the number of markets fixed, (2) the correlation between markups and char-

acteristics of other products decreases quickly enough as the number of products increases

under the researcher’s supply and demand specification (see Theorem 1 for a formal state-

ment of “quickly enough”), (3) the researcher’s supply specification is correct, or needs to

be correct for the analysis to go through, (4) cost instruments or other sources of identifica-

tion are unavailable or insufficient to identify the model alone and (5) estimates of demand

parameters are needed. If all of these conditions hold, IV estimates of the parameters of

interest will be inconsistent. Regarding (4), instruments that shift marginal cost directly do

not need variation in the markup to shift prices, and therefore do not suffer from the issues

brought up here.

Regarding (3), if a particular supply specification is needed to estimate counterfactuals

(e.g. prices after a merger), the analysis will rely on having both accurate demand estimates

and a correct supply specification. If BLP instruments give poorly behaved demand estimates

under a given supply specification, then these conditions cannot both be satisfied. However,

certain applications of demand estimates do not require knowing the supply side specification

(e.g. consumer welfare under the current regime). In these cases, specifying a particular

model of supply that is consistent with BLP instruments having power will be less important,

so long as there exists some plausible supply model that would lead to good performance of

the BLP instruments.

Allowing a random coefficient on price appears to require nontrivial extensions of the methods used in this
paper, and is an important topic for future research.
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While this paper draws on the literature on weak instruments3 (see, for example, Stock,

Wright, and Yogo, 2002), the main issue that this paper brings up is distinct from the prob-

lems with bias and size distortion considered in that literature, and cannot be remedied by

methods proposed in that literature alone. The main issue is that the supply side model

may constrain product characteristic instruments to have very low correlation with price.

If this is the case and a researcher performs a test for identification and finds that these

instruments are highly correlated with price, this must also be taken as evidence that the

model is misspecified in ways that will likely lead to incorrect conclusions in policy coun-

terfactuals based on the supply side model.4 Performing specification tests based on supply

side moments can help in diagnosing these issues, but these still have the possibility of giving

the wrong answer because of sampling error.

In applications where the supply side is used in policy counterfactuals, the most thorough

way of guarding against the issues brought up in this paper is to confirm that it is possible

for BLP instruments to perform well when prices are generated from the supply side model

being used elsewhere in the analysis and primitives are generated from a reasonable data

generating process. This can be done through asymptotic approximations and Monte Carlos

before even looking at the data. See section 4 for further discussion of how these issues can

be diagnosed.

It should also be emphasized that, while this paper focuses on asymptotic approximations

for their generality and tractability, the fundamental issue that the supply side may constrain

product characteristics to perform poorly as price instruments is not a mere product of

asymptotics, and can be elucidated in a finite sample framework through Monte Carlos. For

a given sample size and data generating process for the model primitives, one can generate

one data set with prices from a Bertrand equilibrium and another data set with markups

set to a constant. If BLP instruments do not perform noticeably better in the first case

(on average over Monte Carlo repetitions), one should look for different instruments or a

different model of supply and demand. See section D.3 for an illustration of this approach.

3More precisely, this paper derives weak instrument asymptotics as an equilibrium outcome of sequences
of pricing games. See Pinkse and Slade (2010) for a discussion of related phenomena in the context of spatial
models.

4See section C.1 of the supplementary appendix for a formal statement. The same issue will arise if
the researcher performs inference in some other weak instrument robust way. Unless the supply side is
misspecified, any weak instrument robust test will reject with probability close to its size asymptotically
under any parameter value.
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1.1 Related Literature

To my knowledge, the only other paper that considers asymptotics in the number of products

per market in this setting is Berry, Linton, and Pakes (2004). In order to focus on other

questions involving error from simulation based estimators and sampling error in product

shares, those authors abstract from identification issues and from the supply side by placing

high level conditions that assume that the instruments strongly identify the model under

large market asymptotics. In contrast, the present paper asks which models of supply and

demand allow product characteristic instruments to have power in a large market setting

(and abstracts from the questions of simulation error and sampling error in market shares).

In the cases where the present paper gives a negative answer to this question, the high level

conditions for strong identification in Berry, Linton, and Pakes (2004) do not hold, and the

present paper takes the further step of showing that this leads to inconsistent estimates.

In addition, there has been a recent literature proposing computational improvements

and bias corrections in random coefficients demand models. Dubé, Fox, and Su (2012) and

Conlon (2013) propose improved methods for computing these estimators, with the latter

considering a generalized empirical likelihood estimator with improved higher order bias

properties. Freyberger (2012) derives corrections for simulation error in the case where the

number of markets is large relative to products per market.

More broadly, others have proposed different approaches to modeling and estimating

demand in large markets, including Bajari and Benkard (2005) and Pinkse and Slade (2004).

While the present paper focuses on the demand models and estimators proposed in BLP,

one could make a similar point about taking into account the implications of an equilibrium

model for the behavior of estimators in other settings where one deals with a small number

of distinct venues in which many agents interact. Performing this type of analysis in other

settings is expected to be a useful topic for future research.

This paper is also related to the literature on weak instruments (see Stock, Wright, and

Yogo, 2002, for a survey of this literature). That literature uses sequences of underlying

distributions in which the correlation of instruments with endogenous variables shrinks with

the sample size to get asymptotic approximations that better approximate finite sample

distributions. This paper shows that such sequences arise endogenously from equilibrium

prices when asymptotics are taken in the number of products per market in a certain class

of models. Other settings in which such sequences arise naturally have been observed in the

literature on spatial econometrics (see Pinkse and Slade, 2010).

While the present paper focuses on product characteristic instruments, other papers have
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dealt with the optimal use of other instruments when they are available, such as variables that

shift marginal cost directly. In contemporaneous work, Reynaert and Verboven (2012) focus

on settings where cost instruments are available and consider approximations to optimal

functions of cost shifters and product characteristics based on the assumption of perfect

competition (a setting where BLP instruments have no power). Their focus also differs

from the present paper in that they focus on estimation of the distribution of the random

coefficients (σ in the notation below), while the present paper focuses on the price parameter

(α in the notation below). Romeo (2010) proposes other instruments for models similar to

those considered here.

In addition to the literatures on weak instruments and on estimation of discrete choice

models of demand, this paper relates to theoretical results on oligopoly pricing in markets

where demand is characterized by a discrete choice model. Gabaix, Laibson, Li, Li, Resnick,

and de Vries (2013) consider the limiting behavior of prices in large markets in a similar set-

ting to the present paper, but focus on different questions, leading to a different formulation

and different results (for example, Gabaix, Laibson, Li, Li, Resnick, and de Vries achieve

more generality in other directions by restricting attention to symmetric firms, while the

present paper deals with instruments that attempt to exploit observed asymmetry between

firms). Existence of equilibrium in some of the pricing games I consider follows from ar-

guments in Caplin and Nalebuff (1991), Vives (2001) and Konovalov and Sandor (2010) or

similar methods. There is also a literature examining how restrictions on demand elasticities

in discrete choice models place restrictions on the possible outcomes of empirical applications

(see, among others, Bajari and Benkard, 2003; Ackerberg and Rysman, 2005). While some

of the findings of this paper add to this body of literature, the main focus is on implications

for the identifying strength of BLP instruments.

1.2 Plan for Paper

The paper is organized as follows. Section 2 describes the class of models being studied.

Section 3 derives the asymptotic behavior of equilibrium prices and IV estimates in some

commonly used models of supply and demand. Section 4 presents recommendations for

diagnosing whether the supply side constrains BLP instruments to have poor power. Section

5 provides a Monte Carlo study. Section 6 concludes. Proofs and additional results are in a

supplementary appendix.
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2 The Model

This section describes the class of models and estimators considered in this paper and defines

some notation that will be used later. The models and much of the notation follow BLP and

Berry (1994).

The researcher observes data from a single market with J products labeled 1 through J

and an outside good labeled 0, and M consumers. Each product j has a price pj, a vector

of other characteristics observed to the researcher, xj ∈ R
K , and an unobserved variable

ξj, which can be interpreted as a combination of unobserved product characteristics and

aggregate preference shocks. In addition, each individual consumer i has consumer specific

unobserved components of demand εij and ζi, which are iid across consumers. In what

follows, xj is assumed to contain a constant.

Consumer i’s utility for the jth product is given by uij = u(xj, pj, ξj , εij , ζi) for some

function u. Each consumer buys the product for which utility is the highest, and no con-

sumer buys more than one product. Rather than individual purchasing decisions, we observe

aggregate market shares, including the proportion of consumers who make no purchase (the

share of the outside good). These come from aggregating purchasing decisions over the εs

and ζs of all consumers. It is assumed that the number of consumers is large enough that

sampling variation in market shares from realizations of the εs and ζs can be ignored, so

that the market share of good j, sj(x, ξ, p), is equal to the population probability of choosing

good j conditional on x, ξ, and p: sj(x, ξ, p) = Eε,ζI(uij > uik all k 6= j), where Eε,ζ denotes

expectation with respect to the distribution of {εij}Jj=1 and ζi.

In the models considered here, utility can be written in the following form for some

parameters (α, β, σ): uij = x′
jβ − αpj + ξj + g(εij, ζi, xj , pj), where {εi,j}Jj=1 are independent

of ζi, and the distribution of ζi is indexed by a parameter σ. The linear part is denoted by

δj ≡ x′
jβ − αpj + ξj. Since shares depend on ξ, α and β only through δ, we can write them

as sj(δ, x, p, σ).

While some of the results in this paper use high level conditions on the markup that can

apply more generally (see Theorem 1 below), most of this paper focuses on the static Bertrand

supply model. There are F firms labeled 1 through F . Firm f produces the set of goods Ff ⊆
{1, . . . , J}. Profits of firm f are given by

∑
k∈Ff

pk ·Msk(x, p, ξ)−Cf

(
{M · sk(x, p, ξ)}k∈Ff

)

where M is the number of consumers and Cf is firm f ’s cost function. Firms play a Nash-

Bertrand equilibrium in prices, and rearranging the first order conditions for an interior best
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response gives

∑

k∈Ff

(pk −MCk)
∂

∂pj
sk(x, p, ξ) + sj(x, p, ξ) = 0 (1)

for each product j owned by firm f .5 For single product firms, this simplifies to

pj = MCj −
sj(x, p, ξ)
d

dpj
sj(x, p, ξ)

. (2)

When new products are added to the demand system, the equilibrium price will change,

so that the equilibrium price and share of good j depend on the size of the market J . That

is, even though x, MC, and ξ are sequences, prices, markups and market shares will be

triangular arrays, so that a more precise notation for the equilibrium price of good j would

be pj,J (in some cases, the instruments zj defined below will change with J as well). To avoid

extra subscripts, I use pj to denote the price of good j when the context is clear.6

Finally, in all of the models below, I assume that the vector of unobserved demand shocks

ξ is mean independent of observed product characteristics: E(ξ|x) = 0. This assumption is

the exclusion restriction that provides the basis for the BLP instruments.

2.1 Estimation

In the models considered here, s(δ, x, p, σ) is invertible in its first argument (see Berry, 1994,

BLP). Letting δ(s, x, p, σ) denote the inverse with respect to the first argument, this leads

to the equation

δj(s, x, p, σ) = x′
jβ − αpj + ξj, (3)

5While the models of sections 3.2, 3.3 and 3.4 have a unique equilibrium, results showing whether the
pricing game in the random coefficients logit model has an equilibrium (or a unique one) in the general
setting of section 3.1 are, to my knowledge, not available in the literature. The results in that section hold
for any sequence of equilibria so long as such a sequence exists, and do not impose uniqueness.

6While the entry decision is not explicitly modeled here, one could think of the market size J as being
endogenously determined by firms’ decisions of whether to pay a fixed cost of entering the market. If the
number of consumers M is large relative to the entry cost, more firms will enter, and one can think of
asymptotics in J as arising from asymptotics in M in a two stage model with endogenous entry (note that
this interpretation requires that the information structure of the entry game is such that the exogeneity
assumptions on x and ξ described below hold conditional on entry, which can be ensured by assuming that
entry decisions are made before firms observe x, ξ and marginal costs).
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which can potentially be used to estimate the demand parameters σ, β and α. However, the

parameter σ enters into a function with shares, which are endogenous. In addition, prices

may be correlated with the unobserved ξ through at least two channels. First, ξj enters

the markup −s(δ, x, p, σ)/ d
dpj

s(δ, x, p, σ). Second, ξj may be correlated with unobserved

components of marginal costs if goods that are more desirable in unobserved ways are also

more expensive to make in unobserved ways.

To overcome this endogeneity problem, one needs instruments that are uncorrelated

with ξ, and shift prices enough to identify α and σ. This paper focuses on instruments

based on characteristics of other products. Since we are assuming that ξj is independent

of the observed characteristics of all products, functions of characteristics of other products

will satisfy the instrumental variables exclusion restriction. Since characteristics of other

products enter price through the markup−s(δ, x, p, σ)/ d
dpj

s(δ, x, p, σ), they have the potential

to shift prices enough to consistently estimate the model. Suppose that we use some vector

valued function hj(x−j) as excluded instruments. The parameter estimates minimize the

GMM criterion function

∥∥∥∥∥
1

J

J∑

j=1

(δj(s, x, p, σ)− x′
jβ + αpj)zj

∥∥∥∥∥
WJ

(4)

where zj = (xj, hj(x−j))
′ and WJ is a positive definite weighting matrix with WJ

p→ W for

a strictly positive definite matrix W . Following common terminology, this paper refers to

instruments of this form as product characteristic instruments or BLP instruments.

3 Large Market Asymptotics

I now turn to the question of the asymptotic behavior of demand estimates, particularly those

based on product characteristic instruments, under large market asymptotics. I first state

a general result relating the behavior of BLP instrument based estimates to the asymptotic

behavior of the markup. The remainder of this section is organized into subsections that

show consistency or inconsistency of BLP instrument based estimates for various settings

using primitive conditions.

To give some motivation for the result, let us first consider a special case. Consider

the simple logit model with many small firms in a single market. Consumer i’s utility

for product j takes the form ui,j = x′
jβ − αpj + εi,j + ξj where εi,j is distributed extreme

value independently across products and consumers. This leads to shares taking the form
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sj(x, p, ξ) =
exp(x′

jβ−αpj+ξj)∑
k exp(x′

k
β−αpk+ξk)

, which can be inverted to get (normalizing the mean utility

of the outside good 0 to zero) log sj − log s0 = x′
jβ − αpj + ξj. The derivative of firm j’s

share with respect to j’s price is d
dpj

sj(x, p, ξ) = −αsj(x, p, ξ)(1−sj(x, p, ξ)), which gives the

Bertrand pricing formula, equation (2), as pj = MCj +
1

α(1−sj)
.

As long as shares converge to zero, markups of all products will converge to 1/α. If the

markup were exactly equal to 1/α, product characteristic instruments would yield inconsis-

tent estimates, since they must be correlated with markups to have identifying power. If

the convergence of the markup to 1/α is fast enough, one would expect this to be true for

the actual sequence of markups. More generally, whenever the dependence of equilibrium

markups on characteristics of other products decreases quickly enough with J , product char-

acteristic instruments will lead to inconsistent estimates. The following theorem formalizes

these ideas.7

Theorem 1. Let (xj, ξj,MCj) be iid with finite second moment, and let (α̂, β̂′) be the IV

estimates with σ fixed at its true value and instrument vector zj = (xj, hj(x−j)). Suppose

that

(i)
√
J max1≤j≤J |pj −MCj − b∗| p→ 0 for some constant b∗.

(ii) 1√
J

∑J
j=1

[
zj(x

′
j,MCj, ξj)− Ezj(x

′
j,MCj, ξj)

]
converges to a nondegenerate normal dis-

tribution and 1
J

∑J
j=1 Ehj(x−j) converges to some finite constant as J → ∞.

Let (α̂∗, β̂∗′) be the same estimates obtained from data with pj replaced by p∗j = MCj + b∗.

Then (α̂, β̂′) is inconsistent and ‖(α̂, β̂)− (α̂∗, β̂∗′)‖ p→ 0.

Theorem 1 states that, as long as markups converge to a constant at a faster than
√
J

rate, BLP instruments will lead to inconsistent estimates, even if σ is known and used in

estimation. The conditions on markups are given as high level conditions, so that Theorem

1 does not require the specific structure of any of the demand specifications, supply models,

or equilibrium assumptions used below. As long as the dependence of equilibrium markups

on product characteristics decreases at a faster than
√
J rate, BLP instruments will give

7This theorem, which is used to derive inconsistency results in the random coefficients logit model in
section 3.1, applies to (α, β) with the parameter σ determining the random coefficients treated as known.
Since the BLP instruments lead to inconsistent estimates in that setting, the (negative) message is essentially
the same: even with σ known, product characteristic instruments do not give consistent estimates. However,
extending consistency results such as those in sections 3.2, 3.3 and 3.4 to more general specifications of
random coefficients is left for future research.
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inconsistent estimates.8 In the simple logit model with single product firms, markups are

given by 1
α(1−sj)

, which can be seen to converge to 1/α at a 1/J rate as long as all of the

market shares are roughly proportional to each other. The 1/J rate is fast enough to lead

to inconsistent estimates by Theorem 1.

Section 3.1 gives a formal statement of these results in the random coefficients logit

model, which generalizes the simple logit model used in the discussion above. Sections

3.2, 3.3 and 3.4 consider cases where the dependence of markups on product characteristics

does not decrease or decreases slowly enough that BLP instruments have identifying power

asymptotically. Section B in the supplementary appendix considers some other cases. In all

of these cases, the unifying feature that determines whether the BLP instruments can lead

to consistent estimates is whether the dependence of markups on product characteristics

decreases at a slower rate than the square root of the total number of products.

3.1 Random Coefficients Logit with Single Product Firms

The random coefficients logit model, used by BLP, generalizes the simple logit, allowing for

more general forms of consumer heterogeneity through random coefficients on the observed

product characteristics x. Consumer i’s utility for product j takes the form

uij = x′
jβ − αpj + ξj +

∑

k

xjkζik + εij ≡ δj +
∑

k

xjkζik + εij

where ζik is a random coefficient on product k and εi,j is distributed extreme value indepen-

dently across products and consumers. This specification assumes that there is no random

coefficient on price. In practice, including a random coefficient on price can be important

because of differences in price sensitivity among consumers. While it seems plausible that

similar results will hold with a random coefficient on price, determining whether this is the

case appears to require a nontrivial extension of the results below that does not yield to the

same method of proof.

This section considers asymptotics in which the number of products increases with a

single product per firm. The single product firm assumption is made for simplicity, and the

results will be similar as long as products are added by increasing the number of firms rather

than the number of products per firm (see section B.3 of the supplementary appendix). It is

8In the case with N markets i = 1, . . . , N with Ji products in market i and N → ∞, condition (i) can be

modified by replacing J with
∑

N

i=1
Ji, and with b∗ constant across both i and j, which leads to inconsistency

when markups approach a constant more quickly than
√∑

N

i=1
Ji (see section 3.4).
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also assumed that the dimension of the random coefficients ζ is fixed, and that new products

differ only in drawing new characteristics (xj and ξj) and εi,j terms. As shown in sections

3.2 and 3.3, increasing the dimension of the random coefficients or the number of products

per firm can lead to dramatically different results.

Shares can be obtained by integrating the logit shares for fixed ζ, which gives, let-

ting Pζ be the probability measure of the random coefficients, sj =
∫
s̃j(δ, ζ) dPζ(ζ) where

s̃j(δ, ζ) =
exp(δj+

∑
k xjkζk)∑

ℓ exp(δℓ+
∑

k xℓkζk)
. Differentiating under the integral and using the formulas for

logit elasticities for fixed ζ gives
dsj
dpj

= −α
∫
s̃j(δ, ζ)(1− s̃j(δ, ζ))dPζ(ζ) so that the Bertrand

markup is pj −MCj =
∫
s̃j(δ,ζ) dPζ(ζ)

α
∫
s̃j(δ,ζ)(1−s̃j(δ,ζ))dPζ(ζ)

. If the tails of ζ are thin enough, this can be

shown to approach 1/α quickly by truncating the integral and using bounds on the logit

shares for ζ fixed, then arguing as in the simple logit model.

Theorem 2. In the random coefficients model with single product firms and no random

coefficient on price, suppose that (xj, ξj ,MCj) is bounded and iid over j, and that the tails

of the distribution of ζ are bounded by the tails of a normal random variable. Then, for

pj arising from any sequence of Bertrand equilibria, condition (i) in Theorem 1 holds with

b∗ = 1/α. Thus, under condition (ii) in Theorem 1, the BLP instrument based estimator

with σ known will lead to inconsistent estimates.

Theorem 2 shows that product characteristics lead to inconsistent estimates of α and

β even if the nonlinear parameter σ is known and used in estimation. The boundedness

condition on (xj, ξj,MCj) is imposed for simplicity, and can be replaced by an exponential

tail condition (see section A.2 in the supplementary appendix).

3.2 Nested Logit with Many Nests

The results of section 3.1 show that markups converge to a constant as J → ∞ when a

new idiosyncratic term εi,j is added for each product, with the distribution of the random

coefficients ζ staying the same. One way of avoiding this negative result is to increase the

dimension of ζ as the number of products increases. Increasing the dimension of ζ in a

completely unrestricted way, one would end up with an increasing number of parameters,

which leads to its own problems. Section B.1 of the supplementary appendix considers the

nested logit model, a special case of the random coefficients logit model in which products are

placed in groups, and the random coefficients are associated with group indicator variables.

The nested logit model places enough structure on the random coefficients that the number

of groups can be increased without increasing the number of parameters that need to be
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estimated. The results in section B.1 show that under asymptotics where the dimension of

ζ is increased by adding more groups, BLP instruments can have power asymptotically even

with single product firms.

It should be emphasized that the nested logit model is used for tractability and is intended

to illustrate the point that one can reverse the negative results of section 3.1 through a

specification where the dimension of the random coefficients increases with the number of

products while the dimension of the parameter space stays fixed. One could likely achieve a

similar goal through other specifications of random coefficients (for example, starting with

the nested logit model with many nests and adding some random coefficients to continuous

variables, as in Grigolon and Verboven, 2013), although such an approach will still require

constraints on the joint distribution of random coefficients to keep the number of parameters

from increasing.

3.3 Logit with Many-Product Firms

Now consider the logit model with multiproduct firms, with the number of firms F fixed and

asymptotics taken in the number of products per firm. The own and cross price elasticities

can be shown to take the form d
dpj

sj(x, p, ξ) = −αsj(x, p, ξ)(1−sj(x, p, ξ)) and
d

dpk
sj(x, p, ξ) =

αsj(x, p, ξ)sk(x, p, ξ) respectively. Plugging these into the equilibrium pricing equations (1)

and rearranging gives the markup of product j produced by firm f as pj − MCj = 1
α
+

∑
k∈Ff

(pk−MCk)sk, so that markups are constant within a firm (see Konovalov and Sandor,

2010). Letting bf be the common markup for firm f , this gives a system of equations that

define bf for f = 1, . . . , F . Rearranging and plugging in the formula for shares yields

bf =
1

α

∑
k∈Ff

exp(x′
kβ − αMCk + ξk − αbf )∑

h 6=f

∑
k∈Fh

exp(x′
kβ − αMCk + ξk − αbh)

=
1

α

exp(−αbf )π̂f r̄f∑
h 6=f exp(−αbh)π̂hr̄h

(5)

where π̂f ≡ |Ff |/J is the proportion of products produced by firm f and r̄f is an average of

the characteristics of firm f ’s products given by r̄f ≡ 1
|Ff |
∑

k∈Ff
exp(x′

kβ − αMCk + ξk).

Under a law of large numbers, r̄f will converge to some µr,f for each firm f . Assuming

that π̂f also converges to some πf for each firm f , this suggests that equilibrium prices will

be determined asymptotically by the solution to equation (5) with r̄f and π̂f replaced by

µr,f and πf . This is formalized in the following theorem.

Theorem 3. In the simple logit model with asymptotics in the number of products per

firm, suppose that (xj, ξj ,MCj) is independent across all j and identically distributed within

13



each firm with finite variance. Let zj =
(
xj,

1
J

∑
k∈Ff

h̃(xk)
)

for some function h̃ for

product j owned by firm f . Let µr,f = E exp(x′
jβ − αMCj + ξj), µh,f = Eh̃(xj) and

Vf = E

(
xj

πfµh,f

)
(
x′
j, πfµ

′
h,f

)
ξ2j for j ∈ Ff (where these quantities are assumed to be

finite), and suppose π̂f → πf for some πf for each f . Let (b∗1, . . . , b
∗
F ) be the unique so-

lution to (5) with π̂f r̄f replaced by πfµr,f for each firm f , and let p∗j = MCj + b∗f for

product j produced by firm f , and let (α̂, β̂′) be the estimators defined by (4) with these in-

struments, and let (α̂∗, β̂∗′) be defined in the same way, but with p∗j replacing pj. Then, if
1
J

∑J
j=1 Ezj(x

′
j, p

∗
j) → Mzx for a positive definite matrix Mzx,

√
J [(β̂′,−α̂)′ − (β′,−α)′]

d→ N

(
0, (M ′

zxWMzx)
−1M ′

zxW

(
F∑

f=1

πfVf

)
WMzx(M

′
zxWMzx)

−1

)
,

and the same holds for (β̂∗′,−α̂∗).

Theorem 3 shows that product characteristic instruments can have identifying power in

this setting if they exploit variation in πfµr,f across firms. Thus, BLP instruments can have

power through variation across firms, but not within firms.

3.4 Many Large Markets

According to the results of section 3.1, the BLP instruments lose power in a single market

(or any fixed number of markets) with many firms fast enough that estimates based on

them are inconsistent. In contrast, BLP instruments will typically provide enough variation

to consistently estimate these models if the market size is bounded, and asymptotics are

taken in the number of markets. This section considers the intermediate case where both

the number of products and markets are allowed to go to infinity. To simplify the analysis,

attention is restricted to the simple logit model with no random coefficients.

Some additional notation is needed to describe the results with many markets. We con-

sider N markets, with Ji products in market i. Notation is otherwise the same as described

in section 2, except that prices, product characteristics, etc. are now indexed by the market

i as well as the product j, so that pi,j denotes the price of product i in market j (as be-

fore, the dependence of pi,j on the total market size Ji is suppressed in the notation). Let

J̄ = 1
N

∑N
i=1 Ji be the average number of products per market. Under the asymptotics in

this section, each Ji (and therefore J̄) increases with the number of markets N , but the

dependence of J̄ and the Jis on N is suppressed in the notation.
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Let vN = 1
N

∑N
i=1(Ji − J̄)2/J̄2 and m3 = 1

N

∑N
i=1(Ji/J̄)

3. Here, the Jis are nonrandom,

but vN can be thought of as the normalized sample variance of the Jis. The following

theorem derives the asymptotic behavior of estimates based on the BLP instruments in the

case where vN is bounded away from zero.

Theorem 4. In the simple logit model with many large markets, suppose that (xi,j , ξi,j ,MCi,j)

is bounded and iid across i and j. Let (α̂, β̂) be IV estimates with instrument vector zi,j =(
xi,j ,

1
J̄

∑
k 6=j h̃(xi,k)

)
for some finite variance function h̃. Suppose that min1≤i≤N Ji → ∞

and that vN → v for some v > 0 and m3 converges to a finite constant. Then, if N/J̄ → ∞,

(α̂, β̂) will be consistent and asymptotically normal, with a
√
N/J̄ rate of convergence and

asymptotic variance given in the supplementary appendix. If N/J̄ → c for some c, then

(α̂, β̂) will be inconsistent, and will follow a weak instrument asymptotic distribution given

in the supplementary appendix. The weak instrument asymptotic distribution coincides with

what would be obtained with markups equal to 1/α in the case where c = 0.

Theorem 4 states that, as long as there is sufficient variation in the number of products

per market, the BLP instruments will use this variation to obtain consistent estimates at

a rate
√
N/J̄ as long as N/J̄ → ∞. If N/J̄ → c for some finite c, the results give “weak

instrument” asymptotics, in which the estimates do not converge and follow a nonstandard

asymptotic distribution. The dependence on whether N/J̄ → ∞ comes from an extension

of condition (i) in Theorem 1 to the many market case. In general, BLP instruments require

that the markup not converge to a constant more quickly than
√
NJ̄ . Since the logit markups

in market i converge to 1/α at a 1/Ji rate, this means that the estimates will be inconsistent

if
√
NJ̄/Ji converges to zero uniformly over i which (assuming J̄/Ji is bounded), gives the

N/J̄ → 0 condition for inconsistency and asymptotic equivalence with constant markups.

Note that Theorem 4 shows that the identifying power of BLP instruments in this setting

relies on variation in market size (vN must not converge to zero). If one is not comfortable

using this variation to identify demand (for example, because of issues raised by Ackerberg

and Rysman, 2005), one will want to look for other instruments or a different specification.

The assumption that the data generating process for marginal costs is the same across

markets includes an important assumption about how the cost function varies with market

size. If marginal cost varies systematically with Ji (depending on how Ji varies with the

total number of consumers in a market, this could arise from returns to scale), one can use

Ji or
∑

k 6=j h̃(xi,k) as cost instruments, whether or not they are correlated with markups. It

should also be noted that, while Theorem 4 gives the rate at which the Ji’s must increase
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when 1
J̄

∑
k 6=j h̃(xi,k) is used as the excluded instrument, other forms of BLP instruments

(i.e. other functions of {xi,k}Jik=1) may lead to consistent estimates under weaker conditions.

4 Diagnosis and Recommendations for Empirical Prac-

tice

Theorem 1 and the results in section 3.1 state that certain specifications of supply and

demand constrain BLP instruments to perform poorly under certain asymptotics. On the

other hand, the results in sections 3.2, 3.3 and 3.4 show that more positive results are

possible in essentially the same model, depending on the relative rate at which the number

of products, firms and markets increase. This raises the question of how one can determine

which asymptotics are relevant for a given specification and data set and, in particular,

whether one should worry that the asymptotic results of Theorem 1 are relevant. This section

discusses three ways of addressing this issue: a priori verification of internal consistency

of supply with identification of demand (discussed in section 4.1) tests for identification

(discussed in section 4.2) and tests for misspecification (discussed in section 4.3).

Which combination of these methods is appropriate will depend on whether correct spec-

ification of the supply side is necessary for the overall analysis. If the supply side needs to

be specified correctly (e.g. for computing prices after a merger), the most thorough way of

guarding against the negative results in this paper is to determine, before even looking at

the data, that it is possible to get accurate demand estimates using BLP instruments when

prices are generated from the specified supply and demand model. This can be done using

the asymptotic approximations in section 3 along with Monte Carlo analysis, as discussed

in section 4.1 below. Such an approach is preferable to one based solely on statistical tests,

since it does not run the risk of giving the wrong answer due to sampling error, and because

it does not suffer from issues with pre-testing (see section 4.4 for a discussion of the latter

issue). However, if computational limitations make such a Monte Carlo analysis prohibitive,

the tests for identification and misspecification in sections 4.2 and 4.3 can be used.

For other applications (e.g. computing welfare under the observed equilibrium), speci-

fying a supply side is not necessary. If the researcher does not specify a supply model, the

diagnoses in sections 4.1 and 4.3 will not be applicable (since they use a supply specifica-

tion given by the researcher). In this case, the recommendations in section 4.2 may suffice.

However, to the extent that the analysis will be more plausible if the researcher can exhibit

a supply model that leads to demand estimates performing well, the recommendations in
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sections 4.1 and 4.3 will be useful as well.

4.1 Monte Carlo Verification of Internal Consistency of Supply

with Identification of Demand

The asymptotic results in section 3 can be used as a guide to specifying a model of demand

that is internally consistent with BLP instruments having identifying strength with a given

model of supply. To examine these issues in finite samples for a particular data set, one can

perform a Monte Carlo analysis to see whether it is possible to obtain accurate estimates of

demand (or tests with a good size-power tradeoff) when prices are generated from the full

supply and demand model with a plausible data generating process for model primitives. If

the estimates and tests based on BLP instruments perform well enough in the Monte Carlos

with prices generated from the full model, the researcher can conclude that the negative

results of Theorem 1 and section 3.1 do not apply.

An advantage of this approach is that it does not use the data to decide how to proceed

with the analysis (or, indeed, whether to proceed at all). Thus, it does not suffer from the

issues with pre-testing (described in section 4.4 below) associated with tests for identification

and specification.

4.2 Tests for Identification

Under the conditions of Theorem 1, which lead to inconsistent estimates, the coefficients of

the BLP instruments hj(x−j) in the regression of prices pj on own product characteristics

xj and instruments hj(x−j) will converge in probability to zero. Thus, one way of testing

whether the conditions of this negative result accurately describe a given data generating

process is to run an OLS regression of pj on (xj, hj(x−j)), and perform an F test of the null

hypothesis that the coefficients on hj(x−j) are zero. If the test rejects, one can conclude that

the correlation of the instruments with prices in the data is large enough that the negative

results of Theorem 1 are not an accurate description of the data generating process. See

section C.1 for a formal statement and details of the test.

The test described above corresponds to a test of the null of lack of identification in a

linear model with a single endogenous variable. While this provides a valid test of the null

hypothesis that the conditions of Theorem 1 hold, it does not provide a test of the more

general null hypothesis of lack of identification when the nonlinear parameter σ is unknown.

See Wright (2003) for tests of the general null hypothesis of lack of identification.
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4.3 Tests of Overidentifying Restrictions

If the identification test from the previous section rejects, one can conclude that the condi-

tions of Theorem 1 do not match the correlation between prices and instruments in the data.

However, the negative results of Theorem 1 will still be relevant in this case if the researcher

computes counterfactual outcomes using a supply and demand model that satisfies the con-

ditions of this theorem. If this is the case, rejecting with the test in the previous section will

be the result of misspecification.

For a given supply model, one can test for this form of misspecification as follows. Let

bi,j(α, β, σ) = bi,j(pi, xi, ξj(α, β, σ, xi, pi);α, β, σ) be the markup for product j in market i

recovered from the data assuming the parameter values (α, β, σ) and the researcher’s supply

model (for the static Bertrand model used in most of this paper, this corresponds to equation

(3.5) in BLP; however, bi,j can be defined using other supply models as well). Consider the

GMM moment conditions formed by stacking the moment conditions for (4) with the supply

side moments

E(pi,j − bi,j(α, β, σ)− γ′xi,j)

(
xi,j

hj(xi,−j)

)
= 0 (6)

If the supply side model used to compute bi,j matches the data generating process, and if

hj(xi,−j) does not enter marginal cost directly (i.e. it is a BLP instrument rather than a cost

instrument), (6) will hold. A test for misspecification of the supply side can be obtained

by stacking these supply side moments with the demand side moments and performing a

standard GMM test of overidentifying restrictions.

Section C.2 in the supplementary appendix provides the details of this test and shows

formally that this test has power to detect cases where the test in section 4.2 rejects the

conditions of Theorem 1 with high probability and the model used to compute bi,j satisfies

the conditions of Theorem 1. To get some intuition for this result, let π̂p be the coefficient

on hj(xi,−j) in a regression of pi,j on xi,j and hj(xi,−j) (so that the test in section 4.2 rejects

when π̂p is far from zero). Let π̂markup be the coefficient on hj(xi,−j) in a regression of

bi,j(α̂, β̂, σ̂) on xi,j and hj(xi,−j), and let γ̂h be the coefficient on hj(xi,−j) in a regression of

pi,j − bi,j(α̂, β̂, σ̂) on xi,j and hj(xi,−j) (so that (6) implies that the population counterpart

to γ̂h is zero). By linearity of OLS formula, the relation

π̂p = γ̂h + π̂markup (7)
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holds in finite samples. If the BLP instruments have power in a correctly specified model,

they will be correlated with the markup, so that π̂markup will be far from zero. According

to (7), one can check whether this is the case by making sure that π̂p is far from zero (i.e.

checking that lack of identification is rejected with the test in section 4.2) and that γ̂h is close

to zero (i.e. making sure that a specification test based on γ̂h does not lead to rejection).

4.4 A Warning Regarding Pre-Testing

The tests described in sections 4.2 and 4.3 can be useful in diagnosing whether certain

issues brought up in this paper are relevant in a given data set. However, if one uses the

results of these tests to decide on a specification (e.g. if one uses these tests to decide on

cost instruments vs BLP instruments, or, indeed, whether to proceed at all), the overall

procedure may suffer from undercoverage. While weak instrument robust procedures (see,

e.g., Kleibergen, 2005) can be used to guard against size distortion in settings like the ones in

this paper, the same criticism applies when these tests are embedded in a procedure where

one chooses the specification based on the data. Note that this critique applies not only

to BLP instruments, but to any setting where first stage tests are used to decide which IV

specification to report.

Since the analysis suggested in section 4.1 uses only theoretical insights and Monte Carlos,

it can be performed without looking at the data (except to calibrate sample size, etc.). Thus,

it does not suffer from the pre-testing issues described above: deciding on a specification (or

even whether to proceed at all) based on such an analysis will not result in size distortions.

In this regard, the fact that the performance of BLP instruments is closely tied to theoretical

supply and demand models is an advantage of these instruments in settings where an explicit

supply side model is available. See Chioda and Jansson (2005) and Andrews (2014) for

further discussion of pre-testing issues, with particular reference to IV models.

5 Monte Carlo

This section presents the results of a Monte Carlo study of the random coefficients logit

model of section 3.1. The performance of the BLP instruments and of cost instruments is

examined over a range of specifications for the number of markets, the number of products

per market and variation in the number of products per market. The data generating process

for the Monte Carlo data sets is as follows. Prices are generated from a Bertrand equilibrium.

For the case where the number of products per market varies, approximately 1/3 of markets

19



have 20 products, another 1/3 have 60 products, and the remaining have 100 products.

For the case where the number of products per firm varies, approximately 1/3 of markets

have 2 products per firm, another 1/3 have 5 products per firm, and the remaining have 10

products per firm. xi,j contains a constant and a uniform (0, 1) random variable. I generate

the cost shifter, zi,j , as another uniform random variable independent of xi,j. Marginal cost

is given by MCi,j = (x′
i,j, z

′
i,j)γ + ηi,j for ηi,j defined as follows. To generate η and ξ, I

generate three independent uniform (0, 1) random variables u1,i,j , u2,i,j , and u3,i,j , and set

ξi,j = u1,i,j + u3,i,j − 1 and ηi,j = u1,i,j + u2,i,j − 1. xi,j, ξi,j , and ηi,j are independent across

products j. Utility is given by the random coefficients model of section 3.1, with the random

coefficient on the covariate given by a N(0, σ2) random variable, where σ2 is set to 9 and

is estimated in the Monte Carlos. The parameters are given by α = 1 and γ = (2, 1, 1)′

(where the last element of γ is the coefficient of the excluded cost instrument), with β taking

different values depending on the design. See the supplementary appendix for additional

details, and results for additional specifications.9

Tables 1, 2 and 3 show the results for BLP instruments and cost instruments for several

Monte Carlo designs. Results are reported for estimates of the price coefficient α and for

a nominal level .05 two sided test for α. The Monte Carlo results appear consistent with

the overall result that BLP instruments perform poorly for this demand specification when

the number of products is large enough relative to the number of markets, and that cost

instruments do not suffer from these issues. In Table 1, estimates that use BLP instruments

have substantial bias and variability when the number of products per market is large and the

number of markets small (as measured by median bias and median absolute deviation from

the true value), and perform better when the number of products per market is small. In

contrast, cost instruments lead to relatively precise estimates in large market settings. Table

2 fixes the number of products and markets and explores how variation in other aspects of

the design affects the performance of the BLP instruments. While the BLP instruments

work well in some cases, the results can be very bad depending on the ownership structure

and the coefficient of the product characteristic in the demand specification.

9See also the contemporaneous work of Skrainka (2012) and Conlon (2013) for additional Monte Carlo
results for BLP and cost instruments with prices generated from equilibrium play.
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markets products median median absolute rejection prob. power of test
per market bias of α̂ deviation from α0 at true α of α = 0

1 60 -0.3698 0.6691 0.0783 0.1004
1 100 -0.3648 0.7177 0.1211 0.1381
3 20 -0.1053 0.3358 0.0390 0.3980
3 varied -0.0494 0.2966 0.1523 0.4649
3 60 -0.2186 0.5827 0.0200 0.1040
3 100 -0.2525 0.6383 0.1351 0.1762
20 20 0.0039 0.1140 0.0390 0.9880
20 varied -0.0014 0.1001 0.0400 0.9960
20 60 0.0130 0.2345 0.0230 0.7710
20 100 -0.0379 0.3154 0.0200 0.4560

Table 1: Monte Carlo Results for BLP Instruments (10 Products per Firm, β = (3, 6))

β products median median absolute rejection prob. power of test
per firm bias deviation from α0 at true α of α = 0

(3,1) 10 -0.2928 0.8090 0.1012 0.1273
(3,1) 2 -0.3573 0.7653 0.0991 0.1241
(3,1) varied -0.0054 0.1895 0.0380 0.8440
(3,6) 2 -0.2191 0.6897 0.1061 0.1632
(3,6) varied -0.0190 0.1659 0.0410 0.9450

Table 2: Monte Carlo Results for BLP Instruments (20 Markets, 100 Products per Market)

6 Conclusion

This paper derives asymptotic approximations for differentiated products demand estimators

when the number of products is large. The question of whether product characteristic

instruments have nontrivial identifying power is addressed through asymptotic correlation

with equilibrium markups derived from a full model of supply and demand. The results

show that certain supply and demand models constrain these instruments to have trivial

power under large market asymptotics, and should therefore be avoided in cases where

these asymptotic results are relevant. Other asymptotic settings (demand models and ways

of adding products) are shown to lead to consistent estimates and standard asymptotic

distributions under large market asymptotics. The results can be used as a guide to forming

a model of demand in a large market setting that is consistent with finding identification

through product characteristic instruments and variation in the markups. A Monte Carlo

study shows that the asymptotic results are a good description of finite sample settings of

practical importance.
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markets products median median absolute rejection prob. power of test
per market bias of α̂ deviation from α0 at true α of α = 0

1 60 -0.0247 0.1749 0.1130 0.6710
1 100 -0.0196 0.1358 0.0762 0.7623
3 20 -0.0262 0.1837 0.1002 0.6092
3 varied -0.0122 0.1000 0.0852 0.7916
3 60 -0.0102 0.1007 0.0661 0.7768
3 100 -0.0054 0.0767 0.0662 0.8175
20 20 0.0065 0.0663 0.0220 0.7840
20 varied -0.0008 0.0385 0.0522 0.8554
20 60 -0.0023 0.0365 0.0641 0.8707
20 100 -0.0027 0.0298 0.0481 0.8826

Table 3: Monte Carlo Results for Cost Instruments (10 Products per Firm, β = (3, 6))
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