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Abstract

We consider inference on optimal treatment assignments. Our methods allow for

inference on the treatment assignment rule that would be optimal given knowledge

of the population treatment effect in a general setting. The procedure uses multiple

hypothesis testing methods to determine a subset of the population for which assign-

ment to treatment can be determined to be optimal after conditioning on all available

information, with a prespecified level of confidence. A Monte Carlo study confirms

that the inference procedure has good small sample behavior. We apply the method

to study Project STAR and the optimal assignment of small class based on school and

teacher characteristics.

1 Introduction

In recent decades, there has been increasing recognition in both academic and public circles

that social experiments or social programs, as costly as they are, should be rigorously evalu-

ated to learn lessons from past experience and to better guide future policy decisions. While

recent literature has considered the problem of treatment decision rules given experimental
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or observational data (see, among others, Manski, 2004; Dehejia, 2005; Hirano and Porter,

2009; Stoye, 2009; Chamberlain, 2011; Tetenov, 2012; Bhattacharya and Dupas, 2012), the

problem of constructing confidence statements for the optimal decision rule has received lit-

tle attention. The goal of this paper is to formulate and answer the problem of constructing

confidence statements that quantify the statistical precision of a treatment assignment rule.

This allows researchers to quantify how strong the evidence is in favor of treating certain

individuals.

To understand the importance of quantifying the statistical precision of treatment rec-

ommendations, consider the case where a policy maker wants to design a social program

that gives some selected individuals a treatment intervention (say, reduced class size). The

effect of the treatment on the response outcome (say, student test score) is expected to

be heterogeneous and varies along certain observed variables (say, teacher experience). A

natural goal of the policy maker is to assign treatment only to those with treatment effect

expected to be above some prespecified threshold such as zero or the cost of the treatment.

The expected treatment effects of different individuals are unknown, but, if data from a pre-

vious experimental intervention is available, the policy maker can make an informed guess

about who should be treated, say, by selecting only individuals with values of observed vari-

ables linked to an estimated conditional average treatment effect (conditional on individuals’

observed characteristics) exceeding the prespecified threshold. The literature on statistical

treatment rules has formulated the notion of an “informed guess” and proposed solutions in

terms of statistical decision theory. The contribution of this paper is to develop methods

that accompany the treatment assignment rule with a confidence statement quantifying the

strength of the evidence in favor of providing treatment to certain selected individuals. Ob-

viously, a large-scale experimental intervention with many observations would provide more

compelling evidence for or against treatment than an otherwise identical experiment with

fewer observations. Quantifying this requires statements about statistical precision of the
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treatment decision rule; this is the question that we formulate and answer in this paper.

We formulate the problem of inference on the optimal treatment assignment as one of

reporting a subset of individuals for which treatment can be determined to be optimal con-

ditional on observables while controlling the probability that this set contains any individual

for whom treatment should not be recommended conditional on the available information.

Our procedures recognize the equivalence of this problem with the problem of multiple hy-

pothesis testing. We propose to select the individuals for whom it can be determined that

the population optimal assignment gives treatment by testing multiple hypotheses regarding

the conditional average treatment effect for each individual based on the value of the condi-

tioning variable, while controlling the probability of false rejection of any single hypothesis.

The proposed inference procedure for optimal treatment assignment is useful in policy

analysis and program evaluation studies. In this paper we apply the inference method to

study the assignment of small class in Project STAR. With a 5% significance level, the

method determines that the population optimal treatment assignment rule assigns less ex-

perienced teachers in poor schools to teach small classes. The proposed inference method

also finds evidence for treatment effect heterogeneity among students with different observed

characteristics.

The problem of optimal treatment assignment has been considered by Manski (2004),

Dehejia (2005), Hirano and Porter (2009), Stoye (2009), Chamberlain (2011), Tetenov (2012),

Bhattacharya and Dupas (2012), and others. In this literature, individuals are assigned to

different treatments by a social planner who maximizes social welfare or minimizes the risk

associated with different treatment assignment rules. As discussed above, our goal is distinct

from and complementary to the goal of this literature: we seek to formulate and solve the

problem of confidence statements for the (population) optimal treatment rule, which can

be reported along with a “point estimate” given by the solution to the statistical decision

problem formulated and solved in the literature described above. We emphasize that our
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methods are intended as a measure of statistical precision, not as a statistical treatment

assignment rule that should be implemented given the data at hand (which is the problem

formulated by the papers cited above). Rather, we recommend that results based on our

methods be reported so that readers can quantify the statistical evidence in favor of treating

each individual. We provide further discussion of situations where our confidence region is

of interest in Section 4.

While we are not aware of other papers that consider inference on the treatment assign-

ment rule that would be optimal in the population, Bhattacharya and Dupas (2012) derive

confidence intervals for the expected welfare associated with certain statistical treatment

rules. In contrast, we focus on inference on the population optimal treatment rule itself.

These two methods achieve different goals. Our methods for inference on the optimal treat-

ment rule can be used to answer questions about how optimal treatment assignment varies

along observed covariates. On the other hand, our methods do not attempt to quantify the

increase in welfare from a given treatment rule, which is the goal of estimates and confidence

intervals for average welfare.

This paper is closely related to Anderson (2008) and to Lee and Shaikh (2014). Those

papers use finite sample randomization tests to construct subsets of a discrete conditioning

variable for which treatment can be determined to have some effect on the corresponding

subpopulation. Our problem is formulated differently from theirs. Our goal of finding cor-

rect inference on optimal treatment assignment rule leads us to report only those values of

covariates for which treatment increases the average outcome (rather than, say, increasing

the variance or decreasing the average outcome). This, and our desire to allow for continuous

covariates, leads us to an asymptotic formulation of the corresponding multiple testing prob-

lem. In short, while we both use the idea of multiple hypothesis testing for set construction,

our multiple hypotheses are different, leading to different test statistics and critical values.

The method we use to construct confidence statements on optimal treatment decision
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rules is related to the recent literature on set inference, including Chernozhukov, Hong, and

Tamer (2007) and Romano and Shaikh (2010). Indeed, the complement of our treatment

set can be considered a setwise confidence region in the sense of Chernozhukov, Hong, and

Tamer (2007), and our solution in terms of multiple hypothesis testing can be considered

a confidence region for this set that extends the methods of Romano and Shaikh (2010)

to different test statistics. In addition, our paper uses step-down methods for multiple

testing considered by Holm (1979) and Romano and Wolf (2005) and applied to other set

inference problems by Romano and Shaikh (2010). In the case of continuous covariates, we

use results from the literature on uniform confidence bands (see Neumann and Polzehl, 1998;

Claeskens, 2003; Chernozhukov, Lee, and Rosen, 2011). In particular, we use results from

Chernozhukov, Lee, and Rosen (2011), who are interested in testing a single null hypothesis

involving many values of the covariate. Our testing formulation is different from theirs as our

formulation leads us to the multiple hypothesis testing problem of determining which values

of the covariates lead to rejection; the step-down method gains precision in our context, but

would be irrelevant in Chernozhukov, Lee, and Rosen (2011).

The phrase “optimal treatment assignment” is also used in the experimental design liter-

ature, where treatment assignments are designed to minimize the asymptotic variance bound

or risk of treatment effect estimators (see Hahn, Hirano, and Karlan, 2011; Kasy, 2013). In

contrast to this literature, which considers the design phase of the experiment, we take data

from the initial experiment as given and focus on implications for future policy.

Our proposed inference procedure on optimal treatment assignments is also related to

the test for treatment effect heterogeneity considered by Crump, Hotz, Imbens, and Mitnik

(2008). In fact, it not only tests the null hypothesis that the treatment effect does not vary

along an observed variable, but also solves the additional problem of determining which

values of the variable cause this null to be rejected. Thus, our paper extends the body of

knowledge on treatment effect heterogeneity by providing a procedure to determine for which
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values of the conditioning variable the conditional average treatment effect differs from the

average over the entire population.

Monte Carlo experiments show that our proposed inference procedures have good size

and power properties in small samples. The method properly controls the probability of

including wrong individuals to the confidence region and successfully selects a large portion

of the true treatment beneficiaries. The step-down method in multiple testing improves the

power of the inference procedure given a sample size, meaning that it helps to include more

individuals into the confidence region while properly controlling its statistical precision. The

size and power properties of the proposed inference procedure are also compared with a “folk

wisdom” method based on pointwise confidence bands of the conditional average treatment

effect. We show that the latter method often generates nonempty treatment sets in cases

where no treatment effect is actually present.

The remainder of the paper is organized as follows. Section 2 formulates the problem

of constructing confidence statements for treatment assignment rules. Section 3 links the

problem of statistical inference to multiple hypothesis testing and proposes an inference

method that derives the treatment assignment rule with statistical precision controlled for.

Section 4 discusses situations where our confidence region is of interest. Section 5 conducts

several Monte Carlo experiments that study the small sample behavior of the proposed

inference method. Section 6 applies the method to Project Star. Section 7 concludes.

Appendix A discusses an extension to two-sided confidence regions. Appendix B derives

some of the properties of our confidence region in terms of average welfare when used as a

statistical treatment rule.
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2 Setup

To describe the problem in more detail, we introduce some notation. For each individual

i, there is a potential outcome Yi(1) with treatment, a potential outcome Yi(0) with no

treatment, and a vector of variables Xi observed before a treatment is assigned. Let Di ∈

{0, 1} be an indicator for treatment. The goal of a policy maker is to decide which individuals

should be assigned to the treatment group so as to maximize the expectation of some social

objective function. We take the social objective function, without loss of generality, to be the

realized outcome itself. (This is without loss of generality because costs can be incorporated

into the set-up by being subtracted from the treatment, and budget constraints can be

incorporated by estimating a shadow cost; see Bhattacharya and Dupas, 2012. The only

major restriction here is that outcomes are considered individually, so peer effects are ruled

out.)

Let t(x) ≡ E(Yi(1) − Yi(0)|Xi = x) be the conditional average treatment effect. Then

the population optimal treatment policy is to treat only those individuals with a covariate

Xi = x such that the conditional average treatment effect t(x) is positive. In other words,

the treatment rule that would be optimal given knowledge of the distribution of potential

outcomes in the population and the covariate Xi of each individual would assign treatment

only to individuals with covariate Xi taking values included in the set

X+ ≡ {x|t(x) > 0}.

While the ideas in this paper are more general, for the sake of concreteness, we formulate

our results in the context of i.i.d. data from an earlier policy intervention with randomized

experimental data or observational data in which an unconfoundedness assumption holds.

Formally, we observe n observations of data {(Xi, Di, Yi)}ni=1 where realized outcome Yi ≡

Yi(Di) and Di ∈ {0, 1} is an indicator for treatment and Xi is a vector of pretreatment

7



observables. The data are assumed to satisfy the following unconfoundedness assumption.

Assumption 1.

E(Yi(j)|Di = j,Xi = x) = E(Yi(j)|Xi = x), j = 0, 1.

Assumption 1 is restrictive only if the policy intervention is non-experimental. It is also

called the selection on observables assumption as it requires that the observational data

behave as if the treatment is randomized conditional on the covariate Xi. Assumption 1 is a

standard assumption in the treatment effect literature. Under the assumption, the expected

outcomes for both the treatment and the control group in the sample give the same expected

outcomes as if both potential outcome variables were observed for all individuals.

If the data we observe is from an initial trial period of the policy intervention with

a random sample from the same population, Assumption 1 is enough for us to perform

inference on the positive treatment set X+. However, if the policy maker is deciding on

a treatment policy in a new location, or for a population that differs systematically from

the original sample in some other way, one must make additional assumptions (see Hotz,

Imbens, and Mortimer, 2005). In general, one needs to assume that the conditional average

treatment effect is the same for whatever new population under consideration for treatment

in order to directly apply estimates and confidence regions from the original sample.

We propose to formulate the problem of forming a confidence statement of the true

population optimal treatment rule X+ as one of reporting a treatment set X̂+ for which we

can be reasonably confident that treatment is, on average, beneficial to individuals with any

value of the covariate x that is included in the set. Given a prespecified significance level α,

we seek a set X̂+ that satisfies

lim inf
n

P
(
X̂+ ⊆ X+

)
≥ 1− α, (1)
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or a treatment group that, with more than probability (1− α), consists only of individuals

who are expected to benefit from the treatment. Therefore, X̂+ is defined as a set that

is contained in the true optimal treatment set X+, rather than a set containing X+. This

definition of X̂+ corresponds to the goal of reporting a subpopulation for which there is

overwhelming evidence that the conditional average treatment effect is positive. As discussed

in the introduction, this goal need not be taken as a policy prescription: a researcher may

recommend a policy based on a more liberal criterion while reporting a set satisfying (1)

as a set of individuals for whom evidence for treatment is particularly strong. We propose

methods to derive the set X̂+ by noticing that a set that satisfies (1) is also the solution to a

multiple hypothesis testing problem with an infinite number of null hypotheses Hx : t(x) ≤ 0

for all x ∈ X̃ , where X̃ is the set of values of Xi under consideration. The multiple hypothesis

testing problem controls the familywise error rate (FWER), or the probability of rejecting a

single x for which Hx is true. With this interpretation, X̂+ gives a subset of the population

for which we can reject the null that the conditional average treatment effect is non-positive

given the value of Xi while controlling the probability of assigning to treatment even a single

individual for which the conditional average treatment effect (conditional on Xi) is negative.

The next section describes in detail the proposed inference method for deriving the set X̂+.

In any case, the role of Yi(0) and Yi(1) can be reversed to obtain a confidence region that

contains X+ with 1 − α probability. We give a formulation of two-sided confidence sets in

Appendix A.

3 Inference Procedures

Let t̂(x) be an estimate of the conditional average treatment effect t(x) and σ̂(x) an esti-

mate of the standard deviation of t̂(x). Let X̃ be a subset of the support of the Xi under
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consideration. For any set X ⊆ X̃ , let the critical value ĉu,α(X ) satisfy

lim inf
n

P

(
sup
x∈X

t̂(x)− t(x)

σ̂(x)
≤ ĉu,α(X )

)
≥ 1− α. (2)

The critical value ĉu,α(X ) can be obtained for different estimators t̂(x) using classical central

limit theorems (if X is discrete), or, for continuously distributed Xi, results on uniform

confidence intervals for conditional means such as those contained in Neumann and Polzehl

(1998), Claeskens (2003) or Chernozhukov, Lee, and Rosen (2011) as we describe later. For

some of the results, we will require that these critical values be nondecreasing in X in the

sense that

Xa ⊆ Xb =⇒ ĉu,α(Xa) ≤ ĉu,α(Xb). (3)

Given the critical value, we can obtain a set X̂ 1
+ that satisfies (1). Let

X̂ 1
+ ≡

{
x ∈ X̃

∣∣∣∣t̂(x)/σ̂(x) > ĉu,α

(
X̃
)}

.

Clearly X̂ 1
+ satisfies (1), since the event in (2) implies the event in (1). However, we can

make an improvement on inference using a step-down procedure (see Holm, 1979; Romano

and Wolf, 2005). That is, we can find a set X̂+ that includes X̂ 1
+ but also satisfies (1). The

procedure is as follows. Let X̂ 1
+ be defined as above. For k > 1, let X̂ k

+ be given by

X̂ k
+ =

{
x ∈ X̃

∣∣∣∣t̂(x)/σ̂(x) > ĉu,α

(
X̃ \X̂ k−1

+

)}
.

Note that X̂ k−1
+ ⊆ X̂ k

+, so the set of rejected hypotheses expands with each step. Whenever

X̂ k
+ = X̂ k−1

+ , or when the two sets are close enough to some desired level of precision, we stop

and take X̂+ = X̂ k
+ to be our set.
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Theorem 1. Let (2) and (3) hold. Then X̂ k
+ satisfies (1) for each k.

Proof. On the event that X̂+ 6⊆ X+, let ĵ be the first j for which X̂ ĵ
+ 6⊆ X+. Since X̂ ĵ−1

+ ⊆ X+

(where X̂ 0
+ is defined to be the empty set), this means that

sup
x∈X̃\X+

t̂(x)− t(x)

σ̂(x)
≥ sup

x∈X̃\X+

t̂(x)/σ̂(x) > ĉu,α

(
X̃ \X̂ ĵ−1

+

)
≥ ĉu,α

(
X̃ \X+

)
.

Thus, for X = X̃ \X+, we have that, on the event that X̂+ 6⊆ X+, the event in (2) will

not hold. Since the probability of this is asymptotically no greater than α, it follows that

P (X̂+ 6⊆ X+) is asymptotically no greater than α, giving the result.

Next we provide critical values that satisfy (2) for different estimators t̂(x) depending

whether the covariate Xi is discrete or continuous. The inference procedure described below

for the discrete covariate case parallels results described in Lee and Shaikh (2014) while

the procedure for the continuous covariates case uses results from the literature on uniform

confidence bands and is new to the treatment effect literature.

3.1 Discrete Covariates

Suppose that the support of Xi is discrete and takes on a finite number of values. We write

X̃ = {x1, . . . , x`}

for the set X̃ of values of the covariate under consideration, which we may take to be the

entire support of Xi. In this setting, we may estimate the treatment effect t̂(x) with the

sample analogue. Let N0,x =
∑n

i=1 1(Di = 0, Xi = x) be the number of observations for

which Xi = x and Di = 0, and let N1,x =
∑n

i=1 1(Di = 1, Xi = x) be the number of
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observations for which Xi = x and Di = 1. Let

t̂(xj) =
1

N1,xj

∑
1≤i≤n,Di=1,Xi=xj

Yi −
1

N0,xj

∑
1≤i≤n,Di=0,Xi=xj

Yi

We estimate the variance using

σ̂2(xj) =
1

N1,xj

∑
1≤i≤n,Di=1,Xi=xj

Yi − 1

N1,xj

∑
1≤i≤n,Di=1,Xi=xj

Yi

2

/N1,xj

+
1

N0,xj

∑
1≤i≤n,Di=0,Xi=xj

Yi − 1

N0,xj

∑
1≤i≤n,Di=0,Xi=xj

Yi

2

/N0,xj .

Under an i.i.d. sampling scheme, {(t̂(xj)−t(xj))/σ̂(xj)}`j=1 converge in distribution jointly

to ` independent standard normal variables. Thus, one can choose ĉuα(X ) to be the 1 − α

quantile of the maximum of |X | independent normal random variables where |X | is the

number of elements in X . Some simple calculations show that this gives

ĉu,α(X ) = Φ−1
(
(1− α)1/|X |) (4)

where Φ is the cdf of a standard normal variable. For ease of calculation, we can also use

a conservative Bonferroni procedure, which uses Bonferonni’s inequality to bound the dis-

tribution of |X | variables with standard normal distributions regardless of their dependence

structure. The Bonferonni critical value is given by

ĉu,α(X ) = Φ−1 (1− α/|X |) . (5)

The Bonferroni critical values will be robust to correlation across the covariates (although σ̂

would have to be adjusted to take into account serial correlation across the outcomes for a

given x).
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Both of these critical values will be valid as long as we observe i.i.d. data with finite

variance where the probability of observing each treatment group is strictly positive for each

covariate.

Theorem 2. Suppose that the data are i.i.d. and P (Di = d,Xi = xj) is strictly positive and

Yi has finite variance conditional on Di = d,Xi = xj for d = 0, 1 and j = 1, . . . , `, and that

Assumption 1 holds. Then the critical values defined in (4) and (5) both satisfy (2) and (3).

3.2 Continuous Covariates

For the case of a continuous conditioning variable, we can use results from the literature on

uniform confidence bands for conditional means to obtain estimates and critical values that

satisfy (2) (see, among others, Neumann and Polzehl, 1998; Claeskens, 2003; Chernozhukov,

Lee, and Rosen, 2011). For convenience, we describe the procedure here for multiplier

bootstrap confidence bands based on local linear estimates, specialized to our case.

Let m1(x) = E(Yi(1)|Xi = x) and m0(x) = E(Yi(0)|Xi = x) be the average of potential

outcomes with and without the treatment intervention given a fixed value of the covariate

Xi. Under Assumption 1,

mj(x) = E(Yi(j)|Xi = x) = E(Yi(j)|Xi = x,Di = j) = E(Yi|Xi = x,Di = j), j = 0, 1.

Let Xi = (Xi1 ... Xid) and x = (x1 ... xd). For a kernel function K and a sequence of

bandwidths h1 → 0, define the local linear estimate m̂1(x) of m1(x) to be the intercept term

a for the coefficients a and {bj}dj=1 that minimize

∑
1≤i≤n,Di=1

[
Yi − a−

d∑
j=1

bj(Xi,j − xj)

]2

K((Xi − x)/h1)

Similarly, define m̂0(x) to be the corresponding estimate of m0(x) for the control group with
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Di = 0 and h0 the corresponding sequence of bandwidths. Let ε̂i = Yi − Dim̂1(Xi) − (1 −

Di)m̂0(Xi) be the residual for individual i. Then define the standard error s1(x) of estimator

m̂1(x) as

s2
1(x) =

∑
1≤i≤n,Di=1[ε̂iK((Xi − x)/h1)]2[∑

1≤i≤n,Di=1K((Xi − x)/h1)
]2

and similarly define s0(x) for m̂0(x).

Let n1 and n0 denote the sample sizes for the treatment and control group respectively.

Let the estimator for the conditional average treatment effect be t̂(x) = m̂1(x)−m̂0(x) and its

standard error σ̂(x) =
√
s2

1(x) + s2
0(x). To obtain the asymptotic properties of t̂(x), we use

the following smoothness assumptions and assumptions on kernel function and bandwidths,

which specialize the regularity conditions given in Chernozhukov, Lee, and Rosen (2011) to

our case.

Assumption 2. 1. The observations {(Xi, Di, Yi)}ni=1 are i.i.d. and P (Di = 1|Xi = x) is

bounded away from zero and one.

2. m0(x) and m1(x) are twice continuously differentiable and X is convex.

3. Xi|Di = d has a conditional density that is bounded from above and below away from

zero on X for d ∈ {0, 1}.

4. Yi is bounded by a nonrandom constant with probability one.

5. (Yi −md(x)) |Xi = x,Di = d has a conditional density that is bounded from above and

from below away from zero uniformly over x ∈ X and d ∈ {0, 1}.

6. The kernel K has compact support and two continuous derivatives, and satisfies that∫
uK(u) du = 0 and

∫
K(u) du = 1.
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7. The bandwidth for the control group, h0, satisfies the following asymptotic relations

as n → ∞: nhd+2
0 → ∞ and nhd+4

0 → 0 at polynomial rates. In addition, the same

conditions hold for the bandwidth h1 for the treated group.

To approximate the supremum of this distribution over a nondegenerate set, we follow

Neumann and Polzehl (1998) and Chernozhukov, Lee, and Rosen (2011) and approximate

m̂1 and m̂0 by simulating and using the following multiplier processes

m̂∗1(x) ≡
∑

1≤i≤n,Di=1 ηiε̂iK ((Xi − x)/h1)∑
1≤i≤n,Di=1 K ((Xi − x)/h1)

and

m̂∗0(x) ≡
∑

1≤i≤n,Di=0 ηiε̂iK ((Xi − x)/h0)∑
1≤i≤n,Di=0 K ((Xi − x)/h0)

where η1, . . . , ηn are i.i.d. standard normal variables drawn independently of the data. To

form critical values ĉu,α(X ), we simulate S replications of n i.i.d. standard normal variables

η1, . . . , ηn that are drawn independently across observations and bootstrap replications. For

each bootstrap replication, we form the test statistic

sup
x∈X

t̂∗(x)

σ̂(x)
= sup

x∈X

m̂∗1(x)− m̂∗0(x)

σ̂(x)
. (6)

The critical value ĉu,α(X ) is taken to be the 1 − α quantile of the empirical distribution of

these S simulated replications.

To avoid issues with estimation at the boundary, we place some restrictions on the set X̃

of values of the covariate under consideration. Let X̃ be any set such that, for some ε > 0,{
x̃
∣∣‖x̃− x‖ ≤ ε for some x ∈ X̃

}
⊆ supp(X), where supp(X) denotes the support of the

Xi’s. We define our procedure with X̃ as the set of covariate values under consideration.
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Theorem 3. Under Assumptions 1 and 2, the multiplier bootstrap critical value ĉu,α(X )

defined above satisfies (2) and (3) for any X ⊆ X̃ , with X̃ given above.

Proof. The critical value satisfies (2) by the arguments in Example 7 of Chernozhukov,

Lee, and Rosen (2011) (the conditions in that example hold for the treated and untreated

observations conditional on a probability one set of sequences of Di; the strong approxi-

mations to m̂0(x) and m̂1(x) and uniform consistency results for s1(x) and s2(x) then give

the corresponding approximation for (m̂1(x) − m̂0(x))/σ̂(x)). Condition (3) is satisfied by

construction.

3.3 Extension: Testing for Treatment Effect Heterogeneity

The inference procedure described above can be easily modified to test for treatment effect

heterogeneity. Here we focus on the continuous covariate case since the testing problem

in the discrete covariate case is well-studied in the multiple comparison literature. Let t

be the (unconditional) average treatment effect. The null hypothesis of treatment effect

heterogeneity is

H0 : t(x) = t ∀x.

Let X+− =
{
x
∣∣t(x) 6= t

}
and X̂+− be a set that satisfies

lim inf
n

P
(
X̂+− ⊆ X+−

)
≥ 1− α.

The probability that X̂+− includes some value(s) of x such that t(x) = t cannot exceed

the significance level α. Then the decision rule of the test is to reject H0 if the set X̂+− is

nontrivial.

The set X̂+− is in fact more informative than simply testing the null hypothesis of no
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treatment effect heterogeneity. It also helps researchers to determine for which values of the

conditioning covariateXi the conditional average treatment effect differs from its average over

the entire population. The set X̂+− can be obtained using a method similar to that described

in the previous section for set X̂+. Let t denote the unconditional averate treatment effect,

and ĉhet,α(X ) the critical value of this test for treatment effect heterogeneity. It satisfies

lim inf
n

P

(
sup
x∈X

∣∣∣∣ t̂(x)− t̂− (t(x)− t)
σ̂(x)

∣∣∣∣ ≤ ĉhet,α(X )

)
≥ 1− α,

where t̂ is a
√
n-consistent estimator of t. Let X̂ 1

+− ≡
{
x ∈ X̃

∣∣∣∣ ∣∣(t̂(x)− t̂
)
/σ̂(x)

∣∣ > ĉhet,α

(
X̃
)}

.

For k > 1, let X̂ k
+− =

{
x ∈ X̃

∣∣∣∣ ∣∣(t̂(x)− t̂
)
/σ̂(x)

∣∣ > ĉhet,α

(
X̃ \X̂ k−1

+−

)}
. When X̂ k

+− = X̂ k−1
+− ,

or when the two sets are close enough to some desired level of precision, stop and take

X̂+− = X̂ k
+−. In practice, ĉhet,α(X ) could be set as the 1 − α quantile of the empirical dis-

tribution of the multiplier bootstrap statistic supx∈X

∣∣∣ t̂∗(x)−t̂∗
σ̂(x)

∣∣∣, where t̂∗(x) is the multiplier

process defined earlier and t̂∗ is the estimator for t in the simulated dataset.

4 Motivation for the Coverage Criterion

In this section, we provide a more detailed discussion of settings where our confidence set

X̂+ may be of interest.

4.1 Intrinsic Interest in the Conditional Average Treatment Effect

The CATE and the population optimal treatment rule it leads to are often of intrinsic interest

in their relation to economic theory and its application to the design of policy interventions.

In such settings, one is interested in how the evidence from a particular study adds to the

body of scientific knowledge and overall evidence in favor of a particular theory, rather than

(or in addition to) the more immediate question of how the intervention at hand should be
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implemented. Our confidence set X̂+ guarantees frequentist coverage properties, which can

be used by researchers in forming or testing scientific theories regarding the treatment being

studied.

In our application to the class size intervention in Project STAR, we estimate the aver-

age treatment effects of assigning kindergarten students to small class on their test scores

conditional on teacher experience and whether a school has more than half of its students

receiving free or reduced-price lunch (later on we follow the literature and just use the term

“free lunch”). The estimated CATE is larger for less experienced teachers, and is smaller and

even negative for more experienced teachers. One may speculate about the reasons for this

(perhaps experience allows teachers to overcome the negative effects of large class sizes, or

perhaps more experienced teachers have difficulty adapting their teaching to take advantage

of smaller class sizes), but, before doing so, it is of interest to determine whether the data are

precise enough to give evidence in favor of this effect at all. Our confidence region determines

at a 5% level that the effect is indeed positive for less experienced teachers. However, using

a version of our procedure with the definitions of Yi(1) and Yi(0) switched, one can see that

the negative effect for more experienced teachers is not statistically significant.

We note that, for certain hypotheses regarding the population optimal treatment rule, one

can use a standard hypothesis test that does not correct for multiplicity. In our application,

one can test, for example, the null hypothesis that students in the first type of school taught

by teachers with 10 years of experience do not benefit from smaller classes using a standard

z-test. This works as long as (1) the researcher chooses the hypothesis without using the

data, and (2) the null hypothesis takes a simple form involving a predetermined value of the

covariate. While there are certainly applications where these criteria are met, (1) becomes

an issue whenever correlations in the data suggest new hypotheses to test. Indeed, given that

our data set contains information on school characteristics and student demographics as well

as teacher experience, it seems difficult to argue convincingly that teacher experience should
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have been the focus of our study a priori, particularly if the interaction effect described above

was not expected. Using our approach, we uncover heterogeneity over teacher experience as

well as other dimensions, while controlling for the possibility that the decision to focus on

heterogeneity along a particular dimension was influenced by correlations in the data.

Regarding issue (2), one could try to determine whether the optimal treatment assignment

favors less experienced teachers by testing the null hypothesis, say, that teachers with less

than six years of experience have a larger CATE than those with six or more years of

experience, but this clearly involves some arbitrary choices (such as the number six in this

case). With our methods, if one finds that X̂+ includes all teachers with experience within

a certain range, while the set formed analogously by reversing the roles of Yi(1) and Yi(0)

shows that teachers with experience above a certain threshold should not be treated, one can

conclude that the population optimal treatment assignment favors less experienced teachers.

In other settings as well, studies of optimal treatment assignment often have, as an

additional goal, the formulation and testing of theories explaining observed heterogeneity in

treatment effects. In their study of insecticide-treated nets, Bhattacharya and Dupas (2012)

discuss reasons why uptake may vary along covariates such as wealth and children’s age (see

Section 7.1). The multiple testing approach of the present paper could be used to assess

whether heterogeneity in CATEs is consistent with these theories, while taking into account

the possibility that the theories themselves were formulated based on an initial inspection

of the data.

4.2 “Do No Harm” and Other Decision Criteria

Policy decisions regarding treatment assignment often involve considerations other than ex-

pected welfare maximization of the form that would lead to a decision theoretic formula-

tion with the negative of the sum of individual utility functions defining the loss function.

When evaluating new medical treatments, the United States Food and Drug Administra-
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tion requires clinical trials that include statistical hypothesis tests with a null hypothesis

of ineffective or harmful treatment. This can be interpreted as following the “do no harm”

directive of the Hippocratic Oath. For economic policy, a similar interpretation may be

given to arguments that government intervention should be justified by a certain degree of

certainty that the policy will not be ineffective or harmful. The notion of coverage satisfied

by our confidence set X̂+ can be regarded as an extension of this criterion to the setting

where treatment rules based on stratification by a covariate are a possibility.

Given that a policy maker with an objective function based on the above interpretation

of the “do no harm” objective may indeed wish to implement our confidence set X̂+ as a

treatment rule, it is of interest to ask how this rule performs under the expected welfare

risk considered by Manski (2004). That is, how much will a policy maker who cares about

expected welfare lose by implementing X̂+ (perhaps out of a desire to avoid debate with

a rival policy maker who prefers “do no harm”)? In Appendix B, we derive some of the

expected welfare properties of X̂+ when used as a statistical treatment rule.

4.3 Political Economy

In addition to asking about average welfare, one may be interested in how welfare gains and

losses are distributed over the population, and how this relates to observed variables. This

can have implications for political economy questions regarding what types of individuals

one might expect to support a given policy. Depending on the assumptions made about

the information sets and objectives of policy makers and those affected by the policy, our

confidence set X̂+ can be used to answer such questions, as we now illustrate.

Suppose that a policy is being considered that would have CATE t(x). In forming an

opinion about this policy, individual i knows his or her covariate Xi and the distributions

F1(s|Xi) = P (Yi(1) ≤ s|Xi) and F0(s|Xi) = P (Yi(0) ≤ s|Xi) of outcomes for treatment

and non-treatment conditional on this value of the covariate, but has no further information
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about his or her place within these distributions. If Yi is given in units of individual i’s

Bernoulli utility, individual i will be in favor of the policy if t(Xi) > 0. Thus, under these

assumptions, our criterion gives a set X̂+ such that all individuals with Xi ∈ X̂+ will be

in favor of the policy. Our approach can then be used to see whether heterogeneity of the

treatment effect along the support of the covariate Xi can explain political opinions and

voting behavior.

Note the importance of information assumptions. The information assumptions above

will be reasonable when an individual’s standing in the outcome distribution is sufficiently

uncertain. For example, it may be reasonable to assume that individuals have little knowl-

edge of whether they will benefit from a job training program more or less than their peers.

In contrast, if each individual i has full knowledge of Yi(0) and Yi(1) before the treatment,

then support for the policy among individuals with covariate Xi will be determined by

P (Yi(1) > Yi(0)|Xi), which is not identified without further assumptions (see Fan and Park,

2010).

As another example, suppose that, in addition to experimental data satisfying our con-

ditions, we observe another setting where a policy maker assigns treatment to some group

X ∗. We wish to test the null hypothesis that the policy maker is fully informed about the

CATE and is maximizing expected welfare against the alternative that the policy maker

has a different objective or information set. In our notation, this null hypothesis can be

written as H0 : X+ = X ∗, and rejecting when X̂+ 6⊆ X ∗ provides a level α test, which, in

the case of rejection, can further be used to find groups that would be treated differently

by a fully informed, welfare maximizing policy maker. Considering our application to the

STAR experiment, we find that the population optimal treatment assignment gives small

classes to less experienced teachers. If we found that small classes were given to a different

set of teachers in a similar setting, this could be taken as evidence about the motives or

information sets of the decision makers involved.
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5 Monte Carlos

In this section we investigate the small sample behavior of our proposed inference procedure

for optimal treatment assignment. We consider three data generating processes (DGPs) for

the conditioning variable Xi, the outcome Yi and the treatment indicator Di.

DGP 1: Xi ∼ U(0, 1), ei ∼ N(0, 1/9), vi ∼ N(0, 1), Di = 1(0.1Xi + vi > 0.55), Yi =

5(Xi − 0.5)2 + 5(Xi − 0.5)2Di + ei;

DGP 2: Xi ∼ U(0, 1), ei ∼ N(0, 1/9), vi ∼ N(0, 1), Di = 1(0.1Xi + vi > 0.55), Yi =

0.5 sin(5Xi + 1) + 0.5 sin(5Xi + 1)Di + ei;

DGP 3: Xi ∼ U(0, 1), ei ∼ N(0, 1/9), vi ∼ N(0, 1), Di = 1(0.1Xi + vi > 0.55), Yi =

10(Xi − 1/2)2 + ei.

The unconfoundedness assumption is satisfied in all three DGPs. The conditional average

treatment effect t(x) is the difference between the conditional mean m1(x) = E(Yi|Xi =

x,Di = 1) and m0(x) = E(Yi|Xi = x,Di = 0). In the first DGP t(x) = 5(x − 1/2)2 always

lies above zero except for one tangent point. In the second DGP t(x) = 0.5 sin(5x + 1) is

positive in some parts of the Xi support and negative in the other parts. t(x) is uniformly

zero in the third DGP.

For each DGP, datasets are generated with three different sample sizes and repeated 500

times. The conditional mean m0(x) and m1(x) are estimated using local linear estimation

with Epanechnikov kernel and bandwidths chosen by following rule of thumb:

hl = ĥl,ROT × ŝl × n1/5−1/4.75
l l = 0, 1,

where ŝl is the standard deviation of Xi in the subsample with Di = l, and n
1/5−1/4.75
l is

used to ensures under-smoothing, l = 0, 1. ĥl,ROT minimizes the weighted Mean Integrated

Square Error (MISE) of the local linear estimator with studentized Xi values and is given
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by Fan and Gijbels (1996):

ĥl,ROT = 1.719

 σ̃2
l

∫
w(x)dx

n−1
l

∑nl
i=1

{
m̃

(2)
l (Xi)

}2

w(Xi)


1/5

n
−1/5
l .

In the formula, m̃
(2)
l is the second-order derivative of the quartic parametric fit of ml(x) with

studentized Xi and σ̃2
l is the sample average of squared residuals from the parametric fit.

w(.) is a weighting function, which is set to 1 in this section. The computation is carried out

using the np package in R (see Hayfield and Racine, 2008). To avoid the boundary issue, the

local linear estimator t̂(x) is evaluated between 0.2 and 0.8. The critical value is dependent

on the sample distribution and is calculated using the multiplier bootstrap method with

S = 500 for each simulated dataset.

Before reporting the Monte Carlo results for all 500 simulations, we first illustrate the

implementation of our proposed inference procedure using graphs. The left panel of Figure 1

reports the true CATEs and the local linear estimates of the CATEs based on one randomly

simulated sample of size 500. The right panel reports studentized CATE estimates, the true

optimal treatment set X+ and the proposed inference region X̂+ for the optimal treatment set.

The optimal treatment set contains all x values with positive CATE. The confidence region

X̂+ includes all x values with studentized CATE estimates lying above the final step-down

critical value. On the graphs, we report both the initial (without step-down) and the final

step-down critical values. The region covered by the lines reporting the step-down critical

values include the set of x values used to calculate the supremum of the CATE estimates in

the step-down method.

The confidence region X̂+ for the optimal treatment set controls familywise error rates

properly. As a comparison, the right panel of Figure 1 also reports treatment sets based on

pointwise confidence bands. These sets are constructed as the region where the studentized
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Figure 1: CATE Estimates, Critical Values, and Treatment Sets
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Table 1: Size and Power Properties of The Proposed Inference Method

PW, α = 0.05 Uniform, α = 0.05 PW, α = 0.1 Uniform, α = 0.1
EFER FHR EFER FHR EFER-

SD
FHR-
SD

EFER FHR EFER FHR EFER-
SD

FHR-
SD

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

DGP1: t(x) ≥ 0 for all x ∈ X̃
N=500 0∗ 0.6763 0∗ 0.5857 0∗ 0.6277 0∗ 0.7343 0∗ 0.6248 0∗ 0.6959
N=1000 0∗ 0.7179 0∗ 0.6312 0∗ 0.6750 0∗ 0.7661 0∗ 0.6669 0∗ 0.7266
N=2000 0∗ 0.7535 0∗ 0.6763 0∗ 0.7179 0∗ 0.7971 0∗ 0.7049 0∗ 0.7601

DGP2: t(x) ≥ 0 only for some x ∈ X̃
N=500 0.0460 0.8703 0.0120 0.8092 0.0160 0.8206 0.1060 0.8993 0.026 0.8376 0.0340 0.8485
N=1000 0.0380 0.9117 0.0100 0.8656 0.0120 0.8732 0.0860 0.9315 0.0160 0.8844 0.0220 0.8929
N=2000 0.0260 0.9332 0.0020 0.8962 0.0060 0.9031 0.0760 0.9489 0.0140 0.9110 0.0180 0.9184

DGP3: t(x) = 0 for all x ∈ X̃
N=500 0.2960 /# 0.0860 /# 0.0860 /# 0.4180 /# 0.1520 /# 0.1520 /#

N=1000 0.2560 /# 0.0720 /# 0.0720 /# 0.4040 /# 0.1280 /# 0.1280 /#

N=2000 0.2340 /# 0.0520 /# 0.0520 /# 0.4340 /# 0.1040 /# 0.1040 /#

Note: ∗, EFER is equal to 0 by construction for DGP 1 since the set where the null hypothesis is false is the support
of X.
#, the proportion of false hypotheses rejected is not defined in DGP 3 since the set where the null hypothesis is false
has by construction measure zero.

CATE estimates lie above 1.645, the 95% quantile of standard normal distribution.

We see from the graphs that the local linear estimator works reasonably well. As is

expected, the proposed confidence regions are always smaller than the pointwise treatment

sets. That is because the latter actually does not control the error rate correctly. The

figure for DGP 3 gives an example where the pointwise treatment set gives very misleading

treatment assignment information regarding a policy treatment that has no effect at all. The

step-down method improves the power of the inference procedure for both DGP 1 and DGP

2. As is noted in the figure subtitle, the total number of steps for critical value calculation

is 3 for DGP 1 and 2 for DGP 2. The step-down refinement does not lead to improvement

for DGP3 because the initial confidence region is a null set.

Although the simulation that makes Figure 1 is specially selected for illustration purposes,

the good performance of the proposed inference procedure holds throughout all simulations.

Columns (3)-(6) and (9)-(12) in Table 1 report the size and power of the proposed confi-

dence region X̂+ obtained with and without applying the step-down refinement of critical

values. The associated nominal familywise error rate is 0.05 for columns (3)-(6) and 0.1 for

columns (9)-(12). The size measure used is the empirical familywise error rates (EFER), the
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proportion of simulation repetitions for which X̂ 1
+ (X̂+) is not included in the true set X+.

The power is measured by the average proportion of false hypothesis rejected (FHR), or the

average among 500 repetitions of the ratio between the length of X̂ 1
+ ∩ X+ (X̂+ ∩ X+) and

the length of the true optimal treatment set X+. The size measure is denoted in the table

as EFER and EFER-SD for the step-down method. The power measure is denoted as FHR

and FHR-SD for the step-down method. We see from results reported in these columns that

the proposed confidence region for the optimal treatment set controls familywise error rates

very well. In the case of DGP3 where the least favorable condition of the multiple hypothesis

testing holds and the conditional average treatment effect equals to zero uniformly, the fam-

ilywise error rates are well controlled especially when the sample size is larger. Comparing

results in columns (5)-(6), (11)-(12) to those in columns (3)-(4), (9)-(10), we also see that the

power of our procedure increases when the step-down refinement is used for the calculation

of the critical values.

For comparison purposes, we also report in Table 1 the size and power properties of

confidence regions obtained from pointwise confidence intervals, or all x values that reject

the pointwise null hypothesis that t(x) is negative. Comparing the results in columns (1)-(2)

and (7)-(8) to their uniform counterparts, we see that the pointwise sets, as expected, fail

to control the familywise error rate. In the case of DGP3, where the true average treatment

effect is zero for all x values, more than 23% (40%) of the time the pointwise set estimator

discover some “fake” nonempty positive treatment set when the significance level 5% (10%)

is used. The probability of reporting a “fake” treatment set does not decrease with the

increase in sample size.
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6 Empirical Example: the STAR Project

Project STAR was a randomized experiment designed to study the effect of class size on

students’ academic performance. The experiment took place in Tennessee in the mid-1980’s.

Teachers as well as over eleven thousand students in 79 public schools were randomly assigned

to either a small class (13-17 students), regular-size class (22-25 students), or regular-size

class with a full time teacher aide from grade K to 3. Previous papers in the literature find

that attending small classes improves student outcomes both in the short run in terms of

Stanford Achievement Test scores (Krueger, 1999) and in the long run in terms of likeli-

hoods of taking college-entrance exam (Krueger and Whitmore, 2001), attending college and

in terms of earnings at age 27 (Chetty, Friedman, Hilger, Saez, Schanzenbach, and Yagan,

2010). Previous papers also find that students benefit from being assigned to more experi-

enced teacher in kindergarten, but little has been said about whether and how the effect of

reducing class size varies with teacher experience. The nonparametric analysis in this section

sheds new light on this question. We find small class matters most for students taught by

inexperienced teachers, especially those in poor schools. We use this heterogeneity to study

the optimal assignment of the small class treatment.

The upper panel of Figure 2 plots the conditional mean estimates of grade K test score

percentiles (defined in footnote of Figure 2) conditional on teacher experience and class

type. For both schools located in poorer and richer neighborhoods (i.e. with more than

half or less than half students receiving free lunch), the effect of attending a small class

is larger if the student is taught by an inexperienced but not green-handed teacher. The

effect is larger for schools located in poorer neighborhoods, with the largest point estimate

approaching 20 percentiles. Point estimates also indicates that reducing class size hurts

student performance in classes taught by very experienced teachers. One might argue that

very experienced teachers have set ways of teaching and hence less incentive to adapt to a
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Figure 2: Optimal Treatment Assignment Based Teacher Experience
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Note: Score percentiles are defined following Krueger (1999), where student scores from

all type of classes are translated to score percentile ranks based on the total score distri-

bution in regular and regular/aide classes. The shaded bars in the top panel represent

the number of students assigned to small classes given teacher experience and white

bars represent the number of students assigned to regular/aide classes. Studentized

ATE are average treatment effects divided by their standard errors. Nonparametric

estimation uses the Epanechnikov kernel and the rule-of-thumb bandwidth discussed

in Section 5.

small class size. But one needs to keep in mind that these negative effects are imprecisely

estimated due to the small sample size at the right tail of the teacher experience distribution.

Therefore, it is important to apply the proposed inference method to determine whether the

data are precise enough to give evidence for this negative effect.

The bottom panel of Figure 2 studies the statistical inference of optimal treatment assign-

ment assuming there is no cost relative to the small class treatment. Given the rule-of-thumb

bandwidth (reported in the top graphs) and the support of teacher experience, we conduct
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the inference exercise for teachers with 4-18 years of experience to avoid the boundary issue

described in Section 3. With a 95% confidence level, the confidence set contains teachers

with 4-8 years of experience in poorer schools and teachers with 4-11 years of experience in

richer schools. The result suggests that for both types of schools, assigning small classes to

inexperienced but not green-handed teachers improves students’ test score on average. One

should notice that although the confidence sets for optimal treatment assignment (assuming

zero cost) are similar for both types of schools, the average score improvement is much more

substantial in the first type of school. If one takes into consideration that the cost of reducing

class size is roughly equivalent to the benefit of a 2.22 percentile score increase (details ex-

plained in the footnote of Figure 3), the confidence set for optimal treatment assignment will

then only include inexperienced teachers in schools located in poorer districts, as is shown

in part (a) of Figure 3.

What about the very experienced teachers? Does the inference method say anything

against assigning experience teachers to small classes? Part (b) of Figure 3 computes the

two-sided confidence region proposed in Appendix A with significance level 0.1. The in-

ference method rules out teachers with 18 years of experience in schools located in richer

neighborhoods from the 2-sided confidence set, indicating that the small class intervention

does not improve students average test score by more than 2.22 percentile (the roughly cal-

culated break-even point for the intervention) for those teachers. On the other hand, if cost

of the small class intervention is ignored and the average treatment effect is compared with

zero, all teachers will be included in the 2-sided confidence set. The corresponding figure is

omitted in the interest of space. Figure 3 reinforces our new finding that it is important to

take into account the heterogeneous effect of small class treatment with respect to teacher

and school characteristics.

Figure 4 provides two falsification tests of our inference method. With 95% confidence

level, our confidence region for optimal treatment assignment is empty, indicating that the
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Figure 3: Optimal Treatment Assignment With Nonzero Treatment Cost
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Note: The graph is based on the cost-benefit analysis conducted in Chetty, Friedman,

Hilger, Saez, Schanzenbach, and Yagan (2010), Online Appendix C. Specifically, the

cost of reducing class size is rougly (22.56/15.1 − 1) × $8848 = $4371 per student

per year in 2009 dollars. (The annual cost of school for a child is $8,848 per year.

Small classes had 15.1 students on average, while large classes had 22.56 students

on average.) On the other hand, the benefit of 1 percentile increase in test score is

roughly $1968 (Chetty, Friedman, Hilger, Saez, Schanzenbach, and Yagan, 2010 states

a $9,460 benefit for a 4.8 percentile increase in test score, derived assuming constant

wage return to score increase) per student when life-time earning increase driven by

early childhood test score increase is discounted at present values and measured in 2009

dollars. Therefore, the break-even point of class size reduction for the STAR project

is an average test score increase of 2.22 percentile. Nonparametric estimation uses the

Epanechnikov kernel and the rule-of-thumb bandwidth discussed in Section 5.
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treatment is not at all helpful in improving the falsification outcomes, student id and student

birthday (day 1 to day 31).

Note that students in the same school may face common shocks that affect test scores, so

the inference of optimal treatment assignment described in Section 3 is modified to account

for data clustering. Use i = 1, 2, .., N to denote individuals and j = 1, 2, ..., J schools. To

account for potential within-school dependence, we substitute the multiplier processes used

in (6) by m̂∗∗0 (x) and m̂∗∗1 (x) with

m̂∗∗l (x) ≡
∑

1≤i≤n,Di=l ηj ε̂ijK((Xij − x)/hl)∑
1≤i≤n,Di=lK((Xij − x)/hl)

, l = 0, 1,

where η1, . . . , ηJ are i.i.d. standard normal random variables drawn independently of the data.

The critical value is then taken to be the 1− α quantile of the empirical distribution of the

supremum estimator described in (6). This modified version with multiplier ηj that is fixed

within a cluster can be viewed as corresponding to the wild cluster bootstrap (the terms “wild

bootstrap” and “multiplier bootstrap” appear to be used interchangeably in the literature)

discussed in Cameron, Gelbach, and Miller (2008) in a parametric context, extended to

the local linear nonparametric estimator used here, and with a different multiplier weight.

We conjecture that, as with other settings with nonparametric smoothing, accounting for

dependence is not technically necessary under conventional asymptotics but will lead to

substantial finite sample improvement.

Next we provide a nonparametric analysis of treatment effect heterogeneity using the

method discussed in Section 3.3. Previous papers in the literature find that the effect of

attending small class is larger for boys and and girls on free lunch. The nonparametric

estimates plotted in panel (a) of Figure 5 reinforce these findings. Specifically, the multiple

testing for the positive treatment effect reported in panel (b) of Figure 5 shows that the

score improvement from assigning inexperienced teachers to teach small class is driven by
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Figure 4: Two Falsification Tests

−
2

−
1

0
1

2
3

4

Schools with More than Half Students on Free Lunch

S
tu

de
nt

 ID

5 10 15

Studentized Conditional ATE
Pointwise Critical Value
Stepwise Critical Value

−
2

−
1

0
1

2
3

4

Schools with Less than Half Students on Free Lunch

5 10 15

Studentized Conditional ATE
Pointwise Critical Value
Stepwise Critical Value

−
2

−
1

0
1

2
3

4

Teacher Experience

S
tu

de
nt

 B
ir

th
da

y 
(d

ay
 1

−
31

)

5 10 15

Studentized Conditional ATE
Pointwise Critical Values
Stepwise Critical Values

−
2

−
1

0
1

2
3

4

Teacher Experience

5 10 15

Studentized Conditional ATE
Pointwise Critical Values
Stepwise Critical Values

Note: Studentized ATE are average treatment effects divided by their standard er-

rors. Nonparametric estimation uses the Epanechnikov kernel and the rule-of-thumb

bandwidth discussed in Section 5.
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Figure 5: Treatment Effect Heterogeneity Across Student Groups
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Note: Score percentiles are defined following the definition in (Krueger, 1999), where

student scores from all type of classes are translated to score percentile ranks based

on the total score distribution in regular and regular/aide classes. Nonparametric

estimation uses the Epanechnikov kernel and the rule-of-thumb bandwidth discussed

in Section 5.

students who receive free lunch and boys who do not receive free lunch, two groups that have

substantially worse performance without the small class treatment (see results reported in

Table 2). This finding supports the theoretical results in Lazear (2001) who predicts that

the effect of reducing class size is larger for students with worse initial performance. Also,

in contrast to Whitmore (2005) who finds no significant gender and ratio differences in the

effect of attending small classes, our nonparametric model rejects the null hypothesis of

treatment effect homogeneity with a 5% significance level. The corresponding test statistic

is 3.35, and the simulated critical value is 2.99. Panel (c) of Figure 5 shows that the rejection

of treatment effect homogeneity is driven by boys who do not receive free lunch assigned to

inexperienced teachers with 4 and 5 years of experience. We argue that the insignificant

result found by Whitmore (2005) comes from neglecting the substantial heterogeneity of the

class-size effect associated with teacher experience.

Finally, it is worth pointing out that the test scores used in this section are grade K

scores, so the treatment effects are short-term effects. We do not look at test scores at

higher grades because after grade K there is self-selection into small classes. According
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Table 2: Robustness Checks

Main Parametric Regressions Randomness Check
(1) (2) (3) (4) (5)

Small Class 0.049∗∗∗ 0.056∗∗∗ 0.077∗∗∗ 0.071∗∗

(0.014) (0.013) (0.029) (0.031)

White/Asian 0.103∗∗∗ 0.120∗∗∗ 0.128∗∗∗ 0.108∗∗∗ -0.005
(0.029) (0.018) (0.021) (0.032) (-0.037)

Small Class × White/Asian -0.026 -0.016
(0.029) (0.031)

Girls 0.056∗∗∗ 0.050∗∗∗ 0.054∗∗∗ 0.064∗∗∗ 0.016
(0.007) (0.006) (0.008) (0.009) (0.862)

Small Class × Grils -0.015 -0.027∗

(0.014) (0.016)

Free Lunch -0.148∗∗∗ -0.150∗∗∗ -0.153∗∗∗ -0.149∗∗∗ 0.019
(0.013) (0.010) (0.012) (0.014) (1.240)

Small Class × Free Lunch 0.009 0.004
(0.020) (0.019)

Teacher Experience 0.005∗∗∗ 0.003∗∗ 0.003∗∗ 0.005∗∗∗ 0.049
(0.002) (0.001) (0.001) (0.002) (0.752)

School Fixed Effects N Y N Y

P-value of Hausman Test 0.334 0.198
N 5670 5670 5670 5670

Note: The dependent variable used in Column (1)-(4) is student score percentile. These regressions
also control teacher’s gender, race and highest degree and the proportion of girls in class. Each line
in Column (5), on the other hand, reports one individual regression that regresses various student
and teacher characteristics on a small class dummy. Cluster robust standard errors are reported in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

to Krueger (1999), “Approximately 10% of students switched between small and regular

classes between grades, primarily because of behavioral problems or parental complaints.”

Also, due to the curse of dimensionality, our nonparametric estimation does not control for

school fixed effects, which is typically controlled in parametric analyses using the STAR data.

In column (5) of Table 2, we examine the randomness of class type assignment by regressing

various student and teacher characteristics on the small class dummy. The results show firm

evidence that student and teacher characteristics in kindergarten are not correlated with

treatment assignment. Moreover, the Hausman-type tests conducted in the left panel of

Table 2 also show that controlling for school fixed effects or not does not significantly change

the estimation results, at least not for the grade K analysis conducted in this section.
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7 Conclusion

This paper formulates the problem of forming a confidence region for treatment rules that

would be optimal given full knowledge of the distribution of outcomes in the population. We

have proposed a solution to this problem by pointing out a relationship between our notion

of a confidence region for this problem and a multiple hypothesis testing problem. The

resulting confidence regions provide a useful complement to the statistical treatment rules

proposed in the literature based on other formulations of treatment as a statistical decision

rule. Just as one typically reports confidence intervals in addition to point estimates in

other settings, we recommend that the confidence regions proposed here be reported along

with the statistical treatment rule resulting from a more liberal formulation of the treatment

problem. In this way, readers can assess for which subgroups there is a preponderence of

empirical evidence in favor of treatment.
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Appendix

A Two-Sided Confidence Sets for X+

In this appendix, we develop two-sided confidence sets for the population optimal treatment

set X+ based on a single step version of our procedure with a two-sided critical value.

Formally, our goal is to form sets X̂ inner
+ and X̂ outer

+ such that

lim inf
n

P
(
X̂ inner

+ ⊆ X+ ⊆ X̂ outer
+

)
≥ 1− α (7)

We also note that, for the notion of two-sided coverage given by (7), inverting a two-sided

step-down test will not guarantee coverage when the number of steps is greater than one,

unless additional conditions hold. The issues have to do with so-called directional errors, as

we discuss further below.

For a set X̃ of values of x under consideration, let the critical value ĉ|·|,α(X̃ ) satisfy

lim inf
n

P

(
sup
x∈X̃

|t̂(x)− t(x)|
σ̂(x)

≤ ĉ|·|,α(X̃ )

)
≥ 1− α. (8)

Let the sets X̂ inner
+ and X̂ outer

+ be defined as

X̂ inner
+ = {x ∈ X̃ |t̂(x) > ĉ|·|,α(X̃ ) · σ̂(x)}, X̂ outer

+ = {x ∈ X̃ |t̂(x) ≥ −ĉ|·|,α(X̃ ) · σ̂(x)}. (9)

Theorem 4. If X+ ⊆ X̃ , then the sets X̂ inner
+ and X̂ outer

+ defined in (9) satisfy the coverage

condition (7).
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Proof. On the event in (8), we have, for all x ∈ X̃ ,

t̂(x)− ĉ|·|,α(X ) · σ̂(x) ≤ t(x) ≤ t̂(x) + ĉ|·|,α(X ) · σ̂(x).

For x ∈ X+ ∩ X̃ , t(x) ≥ 0, so the second inequality implies that 0 ≤ t̂(x) + ĉ|·|,α(X ) · σ̂(x),

which implies that x ∈ X̂ outer
+ . For x ∈ X̂ inner

+ , t̂(x)− ĉ|·|,α(X ) · σ̂(x) > 0, so the first inequality

implies that x ∈ X+.

From a multiple hypothesis testing standpoint, the sets X̂ inner
+ and X̃\X̂ outer

+ can be

considered sets where the null H0 : t(x) = 0 has been rejected in favor of t(x) > 0 or t(x) < 0

respectively, while controlling the FWER. To ensure that (7) is satisfied, it is necessary

to control not only the FWER for these null hypotheses, but also the probability that the

decision t(x) > 0 is made when in fact t(x) < 0, or vice versa. Proving the control of these

errors, called “directional” or “type III” errors in the multiple testing literature, can be an

issue for stepwise procedures (see Shaffer, 1980; Finner, 1999).

While the single step procedure given above controls these error rates (thereby giving

two-sided coverage as defined above), the multistep extension of this procedure requires

further conditions. Indeed, the counterexample in Section 3 of Shaffer (1980) shows that

the multistep extension of the above procedure will not satisfy (7) if X̃ has two elements

and t̂(x) follows the Cauchy distribution independently over x. For the case where t̂(x)

is asymptotically normal and independent over x, as in Section 3.1, Theorems 1 and 2 of

Shaffer (1980) show that the directional error rate for the step-down procedure is controlled.

However, results that would apply to the normal approximation used in Section 3.2 (which

involves a sequence of Gaussian processes with complicated dependence structures that do

not even settle down in the sense of weak convergence) are, to our knowledge, not available.

The control of directional errors in such settings is an interesting topic for future research.
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B Performance of X̂+ under Average Welfare Loss

This appendix considers the performance of X̂+ under average welfare loss, when imple-

mented as a statistical treatment rule. Consider the setup with discrete covariates with

support {x1, . . . , x`}. For a treatment rule assigning treatment to X̂ , the regret risk under

average welfare loss, considered by Manski (2004), is given by the difference between ex-

pected welfare under the optimal treatment and under X̂ , and can be written in our setup

as

R(X̂ , P ) ≡
∑̀
j=1

|tP (xj)|fX(xj)
[
P (x ∈ X+,P\X̂ ) + P (x ∈ X̂\X+,P )

]
,

where we now index tP (·) and X+,P by P to denote the dependence on the underlying

distribution explicitly (note that fX depends on P as well, but we will consider classes of

distributions where fX is fixed).

Let Pn be a sequence of distributions such that fX(x) = P (Xi = x) does not change with

n, and such that
√
ntPn(x)→ t∞(x) for some t∞. Suppose that

t̂(xj)− tPn(xj)

σ̂(xj)

converges in distribution, jointly over j, to a vector of independent standard normal variables,

and that
√
nσ̂(xj)

p→ s(xj) for each j. Let cα,k = cα(X ) for |X | = k.

Theorem 5. Under the above assumptions with α ≤ 1/2,

lim sup
n

√
nR(X̂+, Pn) ≤ sup

t>0
t · Φ

(
cα,` −

t

maxx s(x)

)
.
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Proof. For any x with t∞(x) > 0, we will have x ∈ X+,Pn under Pn for large enough n and

√
ntPn(x)Pn

(
x /∈ X̂+

)
≤
√
ntPn(x)Pn

(
t̂(x)

σ̂(x)
≤ cα,`

)
=
√
ntPn(x)Pn

(
t̂(x)− tPn(x)

σ̂(x)
≤ cα,` −

tPn(x)

σ̂(x)

)
n→∞→ t∞(x)Φ

(
cα,` −

t∞(x)

s(x)

)
.

For x with t∞(x) < 0, we have x /∈ X+ under Pn for large enough n and

√
n|tPn(x)|Pn

(
x ∈ X̂+

)
≤
√
n|tPn(x)|Pn

(
t̂(x) ≥ 0

)
=
√
n|tPn(x)|Pn

(
t̂(x)− tPn(x)

σ̂(x)
≥ −tPn(x)

σ̂(x)

)
n→∞→ |t∞(x)|Φ

(
−|t∞(x)|

s(x)

)
,

where the first inequality uses the fact that cn,k ≥ 0 for all k. For t∞(x) = 0, we have

√
nt∞(x)→ 0. Thus,

lim sup
n

√
nR(X̂ , P ) ≤

∑
t∞(x)>0

t∞(x)Φ

(
cα,` −

t∞(x)

s(x)

)
fX(x) +

∑
t∞(x)<0

|t∞(x)|Φ
(
−|t∞(x)|

s(x)

)
fX(x)

≤ sup
t>0

t · Φ
(
cα,` −

t

maxx s(x)

)
.

We now give a lower bound specialized to the case where t∞(x) and s(x) are constant.

Theorem 6. Suppose that the above assumptions hold with t∞(x) = C > 0 and s(x) = 1 for

all x. Then, for any m ∈ {1, . . . , `}

lim inf
n

√
nR(X̂+, Pn) ≥ C · Φ (cα,m − C)

`−1∑
k=m−1

(
`− 1

k

)
Φ (cα,m − C)k [1− Φ (cα,m − C)]`−1−k .
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Proof. For each x we have, for any m ∈ {1, . . . , `},

Pn

(
x /∈ X̂+

)
≥ Pn

(
t̂(x)

σ̂(x)
≤ cα,m and

∣∣∣∣{x′ ∈ {1, . . . , `}\x∣∣∣∣ t̂(x′)σ̂(x′)
≤ cα,m

}∣∣∣∣ ≥ m− 1

)
n→∞→ Φ

(
cα,m −

t∞(x)

s(x)

)
·

∑
X̄s.t.x/∈X̄ ,|X̄ |≥m−1

∏
x′∈X̄

Φ

(
cα,m −

t∞(x′)

s(x′)

)
·
∏
x′ /∈X̄

[
1− Φ

(
cα,m −

t∞(x′)

s(x′)

)]

= Φ (cα,m − C)
`−1∑

k=m−1

(
`− 1

k

)
Φ (cα,m − C)k [1− Φ (cα,m − C)]`−1−k .

Thus,

lim inf
n

√
nR(X̂+, Pn) = lim inf

n

∑̀
j=1

√
ntPn(xj)fX(xj)P

(
xj /∈ X̂+

)
≥
∑̀
j=1

CfX(xj) · Φ (cα,m − C)
`−1∑

k=m−1

(
`− 1

k

)
Φ (cα,m − C)k [1− Φ (cα,m − C)]`−1−k

= C · Φ (cα,m − C)
`−1∑

k=m−1

(
`− 1

k

)
Φ (cα,m − C)k [1− Φ (cα,m − C)]`−1−k

The comparison between X̂+ as a treatment rule and other statistical treatment rules

will depend on how one compares risk functions. Consider the conditional empirical success

(CES) rule, defined by the set X̂CES = {x|t̂(x) > 0} (see Manski, 2004). For α ≤ 1/2, X̂+ is

contained in X̂CES with probability one, so the risk function will always be smaller for X̂+

when t(x) ≤ 0 for all x. Thus, if one chooses a criterion that puts a large enough amount

of weight on cases with negative treatment effects, such as Bayes risk where the prior puts

enough of the mass on negative treatment effects, X̂+ will be preferred to X̂CES. However,

the situation will be reversed in cases where less weight is given to negative effects.

Consider the minimax regret criterion, which takes the supremum of R(·, P ) over an

given class of distributions P ∈ P . Theorem 6 gives an asymptotic lower bound on minimax
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regret for any class of distributions that contains a sequence Pn satisfying the conditions

of that theorem. Theorem 5 essentially gives an upper bound on minimax regret, although

additional technical conditions would be needed to ensure that the lim sup is uniform over

sequences Pn under consideration.

We now consider these bounds and how they relate to the number of values ` taken

by the covariate. Consider the case where s(x) is constant for all x, and let us make the

normalization s(x) = 1. For the CES rule and other rules that assign treatment to x based

only on observations with Xi = x, the minimax regret will not increase as ` increases (the

normalization s(x) = 1 means that, as ` increases, the variance of Yi decreases so that the

difficulty of the estimation problem for each x stays the same despite each x having fewer

observations). However, the minimax regret for X̂+ will increase without bound, as we now

show.

First, consider the lower bound. Let C = Cn = cα,b`/2c, where bsc denotes the greatest

integer less than or equal to s. Then, applying the bound with m = b`/2c, we obtain a lower

bound of

cα,b`/2c(1/2)
`−1∑

k=b`/2c−1

(
`− 1

k

)
(1/2)k(1/2)`−1−k = cα,b`/2c(1/2)

`−1∑
k=b`/2c−1

(
`− 1

k

)
(1/2)`−1.

The last term is the probability of a binom(1/2, ` − 1) being at least b`/2c − 1, which

converges to 1/2 as ` → ∞. Since cα,b`/2c/
√

2 log ` converges to one as ` → ∞, it follows

that the asymptotic minimax regret is bounded from below by
√

2 log `/4 times a sequence

that converges to one as ` increases.

For the upper bound, note that, using the fact that Φ(−s) ≤ φ(s)/s for s > 0, where

φ(s) is the standard normal pdf, we have, for t > cα,`, letting s = t− cα,`

tΦ(cα,` − t) = (s+ cα,`)Φ(−s) ≤ cα,` + φ(s) ≤ cα,` + φ(0).
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For t ≤ cα,`, tΦ(cα,` − t) is clearly bounded by cα,`, so the right hand side of the above

display gives a bound for supt≥0 tΦ(cα,`− t). Since (cα,` + φ(0))/
√

2 log ` converges to one as

` increases, this gives an approximate upper bound of
√

2 log ` for large `.

Thus, the minimax regret (under average welfare loss) for implementing X̂+ as a statistical

treatment rule increases with ` at a
√

log ` rate. This reflects the fact that, due to its

incorporation of multiple hypothesis tests, this rule becomes increasingly conservative with

`. Since the average welfare loss function along with minimax regret leads to a symmetric

treatment of “overestimation” and “underestimation” of X+, this increasing conservativeness

leads to worse behavior for large `. On the other hand,
√

log ` increases slowly with `, so

the increase in minimax regret as ` increases is not too large.
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