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Abstract

We propose a fast resample method for two step nonlinear parametric and semiparametric models,

which does not require recomputation of the second stage estimator during each resample iteration.

The fast resample method directly exploits the score function representations computed on each

bootstrap sample, thereby reducing computational time considerably. This method is used to ap-

proximate the limit distribution of parametric and semiparametric estimators, possibly simulation

based, that admit an asymptotic linear representation. Monte Carlo experiments demonstrate the

desirable performance and vast improvement in the numerical speed of the fast bootstrap method.
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1 Introduction

Resampling methods are attractive because they do not require analytic derivation of

the limiting distribution and a consistent estimator for it. However, bootstrap and other

resampling methods can be computationally intensive in many nonlinear econometric mod-

els where estimation of the parameter requires numerical optimization. See for example

Gonçalves and White (2004).

The estimating equation, or score function bootstrap approach, considered by Hu

and Zidek (1995), Hu and Kalbfleisch (2000), Davidson and MacKinnon (1999), Andrews

(2002) and Kline and Santos (2011), cleverly avoids this computational complexity by

exploiting the asymptotic influence function representation of nonlinear estimators. The

fast resampling procedure proposed in this paper extends this literature to multistage

semiparametric estimators, retaining the computational advantage while avoiding the dif-

ficulty of analytically characterizing the effect of initial stage estimation on the asymptotic

distribution of the final stage parameter. The key idea in our setting is to achieve the

latter goal by incorporating resampling of first stage estimators of possibly nonparametric

functions in the second stage influence function representation.

In addition to nonlinearity and the difficulty of numerical optimization, many semi-

parametric estimators in economics also depend on a first step nonparametric estimator of

an infinite dimensional function. While an extensive theory is available for demonstrating

parametric rate of convergence to a limiting normal distribution (see for example the gen-

eral results of Chen, Linton, and Van Keilegom (2003), the time series generalization by

Chen, Hahn, and Liao (2011), and the earlier contributions by Newey (1994) and Andrews

(1994)) practical inference for these models remains difficult.

Several methods have been developed for these models. If the asymptotic variance can

be characterized analytically, using the pathwise derivative calculation in Newey (1994)

and making use of Chen, Linton, and Van Keilegom (2003) to allow for general nons-

mooth moment conditions, a consistent estimator using sample analogues is often avail-

able. Another approach, described and validated by Ackerberg, Chen, and Hahn (2011)

and available when the first stage is estimated using sieves, is to estimate the first and
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second stage together, treating the first stage sieve estimate as parametric. In addition,

a slightly modified version of the canonical bootstrap has been shown to work in these

settings by Chen, Linton, and Van Keilegom (2003), which we will hereafter refer to as

CLK.

Each of these approaches has limitations. While the first approach is useful in many

settings, there are many cases where the asymptotic distribution is difficult to characterize

analytically. Consistent estimation of the asymptotic distribution based on sample analogs

is also subject to implementation errors. The second approach, while useful when the

first stage is estimated using sieves, is harder to apply when the first stage is estimated

using kernels and when analytic asymptotic distribution is difficult. The third approach

is typically easy to implement in programming, but can be computationally burdensome

because of difficulties with nonlinear optimization. The methods proposed in the present

paper provide an useful alternative to the existing approaches, which are particularly

useful when the researcher does not use parametric sieve methods in the first stage, and

the effect of the first stage nonparametric estimate on the asymptotic variance is difficult

to characterize analytically. Examples from the literature include Hotz, Miller, Sanders,

and Smith (1994), Srisuma and Linton (2012), Hong and Shum (2010) and Bajari, Hong,

and Khwaja (2006). From a computational standpoint, our methods are tailored to the

case where the second stage is difficult to compute, but the first stage requires relatively

little time for computation: the only quantity that must be computed repeatedly for our

method is the first stage nonparametric estimate.

The paper is organized as follows. In Section 2 we first outline our framework in

the context of two stage semiparametric estimators in which the first stage is possibly

nonparametric and the second stage is parametric. Then we describe how fast resampling

works and how it can be used in conducting inference on the estimator. We allow for a

broad category of direct estimators and simulation based indirect estimators admitting an

asymptotically linear representation. The estimator can be either one stage or multi-stage,

and the first stage can be parametric or nonparametric. Section 3 provides the formal

results of the consistency of the fast resampling procedure. A brief discussion follows
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on how to extend the fast resampling procedure to multi-step estimation problems, and

some primitive conditions that imply stochastic equicontinuity when data is not iid. In

Section 4 we demonstrate through a Monte Carlo experiment that fast bootstrap achieves

desirable performance and improves computational speed when compared with standard

bootstrap.

2 Framework and fast resampling methods

Consider an estimator θ̂ of a parameter θ0 ∈ Θ ∈ Rd formed from a sample X =

(X1, . . . , Xn) (iid or dependent data). The estimator θ̂ can potentially depend on an

initial estimate ĥ of a nuisance parameter h0 ∈ H which can be either finite dimensional

or infinite dimensional (our procedure can be generalized in a straightforward way to mul-

tistage estimators with more than two stages in which each stage depends on an estimate

in the previous stage). Often θ̂ is obtained by equating a set of moment conditions of

dimension k to approximately zero

ĝn

(
θ, ĥ
)
≡ 1

n

n∑
i=1

g(Xi, θ, ĥ)

such that

g (θ, h0) ≡ Eg(Xi, θ, h0) = 0 if and only if θ = θ0.

In the rest of the paper we will focus on this GMM setup. It can be modified with minor

changes to the M-estimator framework. When the number of moment conditions ‘k’ in

g (Xi, θ, h) is greater than the number of parameters ‘d’, the GMM estimator θ̂ is often

defined as the minimizer of a quadratic objective function

θ̂ = arg min
θ∈Θ

gn

(
θ, ĥ
)′
Wgn

(
θ, ĥ
)

= arg min
θ∈Θ

∥∥∥gn (θ, ĥ)∥∥∥ . (1)

where W is a k × k positive definite weighting matrix.

Under mild conditions, θ̂ usually has the following influence function representation

that depends on ĥ:

√
n(θ̂ − θ0) = −

(
Γ′1WΓ1

)−1
Γ′1W

√
ngn

(
θ0, ĥ

)
+ op(1) (2)
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Here, Γ1 = ∂
∂θEg(X, θ, h0)

∣∣∣
θ=θ0

. Hence asymptotic normality of
√
n(θ̂ − θ0) depends on

the validity of the following condition:

√
ngn

(
θ0, ĥ

)
d−→ N (0, V1) .

Under suitable conditions, one can separate the dependence of g (·) on the initial esti-

mate ĥ and obtain an asymptotic linear influence function representation of the following

form:

√
ngn

(
θ0, ĥ

)
=

1√
n

n∑
i=1

[g(Xi, θ0, h0) + ψ(Xi)] + op(1) (3)

for some function ψ (Xi) that represents the impact of replacing h0 with ĥ on the second

stage estimator. Under appropriate mixing conditions and conditions on the moments of

the sample mean in equation 3, the normalized estimator
√
n
(
θ̂ − θ0

)
will converge to a

normal distribution with variance matrix (Γ′1WΓ1)−1 Γ′1WV1WΓ1 (Γ′1WΓ1)−1 where

V1 = lim
n→∞

Var

{
1

n1/2

n∑
i=1

[g(Xi, θ0, h0) + ψ(Xi)]

}
, (4)

which reduces to V1 = E [g(X, θ0, h0) + ψ(X)] [g(X, θ0, h0) + ψ(X)]′ in the iid case.

One approach to inference is to estimate this asymptotic distribution using Ŵ and

estimates Γ̂ and V̂1 of Γ and V1. Although it is usually possible to obtain consistent

estimates of these matrices, in particular Γ̂ and Ŵ , estimating V1 can be burdensome and

often times requires substantial and difficult analytic calculations.

One alternative is to bootstrap. Using the original data X, we draw repeated bootstrap

samples X∗ = (X∗1 , . . . , X
∗
n) and use the distribution of the statistic or a modified version

of it over the bootstrap samples to estimate the unknown sampling distribution. The

nonparametric multinomial bootstrap is designed for iid data and draws (X∗1 , . . . , X
∗
n) as

iid samples from the empirical distribution Fn(x) = 1
n

∑n
i=1 I[Xi ≤ x].

For stationary dependent data, the bootstrap sample X∗ can be drawn using the

moving block bootstrap (MBB), defined as follows. Let Xn+i ≡ Xi and the t-th block of

the data with b < n elements to be Bt,b = {Xt, . . . , Xt+b−1} for t = 1, . . . , n. Let k = bnb c,

and I1, . . . , Ik be a sequence of iid Uniform{1, . . . , n}. The MBB sample X∗ will be all
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the X ′is in {BI1,b, BI2,b, . . . , BIk,b}. That is, X∗ = (X∗1 , . . . , X
∗
l ), where X∗1 = XI1 ; . . . ;

X∗b = XI1+b−1; X∗b+1 = XI2 ; . . . ; X∗l = XIk+b−1 and l = kb ≤ n. In other words, the k

random numbers Ij choose k out of n blocks of size b.

CLK provide conditions under which the distribution of θ̂∗ estimated using the multi-

nomial bootstrap procedure provides a consistent estimate of the asymptotic variance of

θ̂ in the iid case, which are generalized to allow for dependent data in Chen, Hahn, and

Liao (2011) and in Lemma 4.2 in Chen (2007) under stationary beta-mixing conditions. In

other words, after generating X∗ from X as described above, θ̂∗ is obtained by minimizing

the expression[
n∑
i=1

g(X∗i , θ, ĥ
∗)− g(Xi, θ̂, ĥ)

]′
Ŵ

[
n∑
i=1

g(X∗i , θ, ĥ
∗)− g(Xi, θ̂, ĥ)

]
(5)

over θ, where ĥ∗ is an estimate of h0 formed using the bootstrapped sample X∗. The

bootstrap estimate of the distribution of
√
n(θ̂ − θ0) is the distribution of

√
n(θ̂∗ − θ̂)

conditional on the data X.

Drawing repeated simulations from the bootstrap distribution requires repeatedly solv-

ing a minimization problem. This may be difficult computationally. We propose a boot-

strap procedure that avoids this minimization problem, but also does not require comput-

ing an estimate of V1. Rather than minimizing the expression in (5), we base our bootstrap

procedure on the influence function representation in (2).

Using either multinomial or MBB bootstrap draws X∗, and an estimate ĥ∗ of h0 based

on these draws, our bootstrap procedure estimates the distribution of
√
n(θ̂ − θ0) using

the distribution of

η̂∗ = −
(

Γ̂′1Ŵ Γ̂1

)−1
Γ̂′1Ŵ

√
n
(
g∗n

(
θ̂, ĥ∗

)
− gn

(
θ̂, ĥ
))

(6)

conditional on X, where we have defined

g∗n (θ, h) =
1

n

n∑
i=1

g (X∗i , θ, h) .

and Γ̂1 and Ŵ are consistent estimates of Γ1 and W respectively. Intuitively, (6) is the

bootstrap analog of the linear influence function representation of (2). Implementation
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wise, the empirical distribution of η̂∗ across a large number of bootstrap simulations serves

as an approximation for the asymptotic distribution of
√
n
(
θ̂ − θ0

)
. The number of

bootstrap simulations is only limited by the amount of computing power.

Each of the resampling methods described above requires a consistent estimate Γ̂1 of

Γ1. For example, when the moment function is differentiable with respect to θ, one can

use

Γ̂1 =
∂

∂θ
ĝn

(
θ̂, ĥ
)
.

When ĝn

(
θ̂, ĥ
)

is not differentiable in θ, numerical derivative can be used to compute Γ̂1

and is consistent under weak conditions on the step size parameters (e.g. Hong, Mahajan,

and Nekipelov (2010)).

3 Consistency of the fast resample algorithm

In this section, we show that our modified bootstrap procedure is consistent under essen-

tially the same conditions used to show consistency of the procedure based on the centered

bootstrap objective function (5) in CLK (the only additional condition is the availability

of consistent estimates Γ̂1 and Ŵ ). The proof follows from an application of the results

in CLK to a certain artificially defined parameter.1 Since the regularity conditions are

the same as in CLK, we refer the reader to this paper for the conditions, and methods

for verifying them (in their notation, M∗n(θ, h), Mn(θ, h) and M(θ, h) play the role of our

g∗n(θ, h), gn(θ, h) and g(θ, h) respectively). We use ’
p
;’ to denote conditional weak con-

vergence in probability, that is, conditional on the observed sample X, the bootstrapped

statistic converges in distribution (see, e.g., Kosorok, 2008, for a formal definition).

Theorem 1. Suppose that Γ̂1
p→ Γ and Ŵ

p→ W , and that the conditions of Theorems 2

and B in CLK hold. Then

√
n(θ̂ − θ0)

d→ N(0,Ω) and η̂∗
p
; N(0,Ω)

where Ω = (Γ′1WΓ1)−1 Γ′1WV1WΓ1 (Γ′1WΓ1)−1 and Γ1 and V1 are defined previously.

1We thank an anonymous referee for suggesting this simplied proof.

7



Proof. The asymptotic normality of θ̂ is a restatement of Theorem 2 of CLK. For the

conditional convergence in distribution of the bootstrap estimator η̂∗, first apply Theorem

B of CLK to the moment condition E[g(Xi, θ0, h) − β] = 0 at (β0, h0), where β is taken

to be the parameter of interest (and is known to be zero). The estimator β̂ is simply

gn(θ0, ĥ), and the bootstrap estimate is β̂∗ = g∗n(θ0, ĥ
∗), so, by Theorem B of CLk,

√
n
[
g∗n(θ0, ĥ

∗)− gn(θ0, ĥ)
]

=
√
n(β̂∗ − β̂)

p
; N(0, V1)

for V1 given in (4). By this along with the consistency assumption and bootstrap stochastic

equicontinuity assumption (2.5’B) in CLk, it follows θ0 can be replaced by θ̂ in the display

above, giving

√
n
[
g∗n(θ̂, ĥ∗)− gn(θ̂, ĥ)

]
p
; N(0, V1).

The result follows by this and consistency of Γ̂1 and Ŵ .

The first part of Theorem 1 restates Theorem 2 in CLK, and is restated only to

show that the distribution approximated by the bootstrap, given in the second half of

the display, is in fact the correct one (both are normal with the same Ω). It follows

from this that confidence intervals based on the fast bootstrap have the correct coverage

asymptotically. In the context of dependent data and moving block bootstrap, Radulović

(1996) provides conditions on the block size selection, the beta mixing coefficient, and the

envelope function of the moment condition for the stochastic equicontinuity condition and

its bootstrap version required in Theorem 1.

CLK also provide examples in which primitive conditions that satisfy their Theorems

2 and B can be verified, including a partial linear endogeneity quantile regression model.

The same arguments in their paper can also be used to verify other models, for example the

quantile treatment effect model in Firpo (2007). In addition, there are empirical models

in which the moment conditions are smoothly differentiable in the underlying parameters

but are nevertheless difficult to compute numerically. Examples include semiparametric

estimators for dynamic discrete choice models (Rust (1987) and Hotz, Miller, Sanders,

and Smith (1994)). Differentiability of value functions in dynamic discrete choice models

is shown in the recent work by Norets (2010).
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4 Monte Carlo Simulations

4.1 Model

To study the finite sample performance of the fast bootstrap method, we conduct a small

monte carlo simulation of a two step model. We use the dynamic discrete choice model of

Rust (1987) with the estimation procedure proposed in Hotz and Miller (1993). Dynamic

discrete models similar to this have driven large interest in the industrial organization lit-

erature; see, for example, Bajari, Benkard, and Levin (2007), Ryan (2012), Aguirregabiria

and Mira (2007) and Arcidiacono and Miller (2011). The first stage estimation of this

model impacts the asymptotic variance of the second stage in a non-trivial way, which

makes the analytical derivation of a variance estimator difficult. It becomes appealing

to use resampling methods to draw inference on the parameters of interest which are es-

timated in the second stage. Moreover, restrictions on the cost function will produce a

non-linear moment function, which makes the second stage difficult to optimize. Hence,

the fast bootstrap will be computationally less expensive than the conventional bootstrap.

The model is as follows. A manager has to decide at each period t whether to keep or

replace a machine of age s. The cost of keeping the machine is c(s, θ) + v0, where θ is a

finite dimensional parameter, and v0 is a random shock. The replacement cost is R + v1,

where R ≥ 0 is a parameter and v1 a random shock. Although this is an infinite horizon

problem, we limit the state variable s to {1, 2, . . . ,M} by assuming that the cost of keeping

the machine does not change after M = 30. The shocks vt = (v0t, v1t) are observed by the

agent at time t, and assumed to be iid standard bivariate normal with zero covariance.

The manager chooses at ∈ {0, 1} in each period t, where 1 means he decides to replace

the machine; 0 otherwise. He discounts the future by a factor of β ∈ (0, 1).

The cost function will be a 3th-order polynomial in s, c(s; θ) =
3∑

k=0

θks
k. The cost

of keeping a machine is always positive. We will assume the marginal cost is always

increasing, that is, the cost function is convex. For any parameter vector θ, we can
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generate such a cost function if we specify θ0 = f0(θ1, θ3) and θ2 = f2(θ3), where

f2(θ3) = −1

2
min

s∈[0,M ]
6θ3s

f0(θ1, θ3) = − min
s∈[0,M ]

θ1s+ f2(θ3)s2 + θ3s
3

We define the value function V (s) and choice specific value functions V0 (s) and V1

(which does not depend on s):

V (s) = max
{at}t
−E

{ ∞∑
t=0

βt [at(R+ v1t) + (1− at)(c(st, θ) + v0t)]

∣∣∣∣∣ s0 = s

}

V0(s) = −c(s, θ) + βV (min{s+ 1;M})

V1 = −R+ βV (1)

The manager’s policy function will be σ(s, v) = I{V1− v1 ≥ V0(s)− v0}, and p(s) = P [a =

1|s] = Φ
(
[V1 − V0(s)]/

√
2
)
. Therefore, we can express the policy function in terms of

p = (p(1), . . . , p(30)): σ(s, v, p) = I{
√

2Φ−1(p(s)) ≥ v1 − v0}. Next, we want to write the

probability of choice a conditional on state s as a function of p and structural parameters

λ = [θ1 θ3 R]′.

Using the expression for the policy function and joint normality of vt, we can define

the expected optimal payoff at a given period given s to be:

U(s; p, λ) = −E [σ(s, v)(R+ v1) + (1− σ(s, v))(c(s, θ) + v0)| s]

= −
[
(1− p(s))s

0 . . . (1− p(s))s
3 p(s)

]
γ(λ) +

√
2φ(Φ−1(p(s)))

≡ ψ1(s; p)′γ(λ) + ψ2(s; p) (7)

where γ(λ) = [f0(θ1, θ3) θ1 f2(θ3) θ3 R]′.

Next, we need to consider all future paths for st+k, k ≥ 1 given we are at st today. The

one period transition probability can be written in terms of the parameter p: P (st+1 =

s′|st = s; p) = I{s′ = 1}p(s) + I{s′ = min{s + 1,M}}(1 − p(s)). This allows us to retrieve

P (st+k = s′|st = s; p) for any k ≥ 1. Using this and equantion (7), we can write the choice

specific value functions in terms of the parameters p, λ.
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V0(s; p, λ) = −c(s, θ) + β
∞∑
t=0

βt
M∑
u=1

P (st = u|s0 = min{s+ 1;M}; p)U(u; p, λ)

= ψ3(s; p)′γ(λ) + ψ4(s; p)

V1(p, λ) = −R+ β

∞∑
t=0

βt
M∑
u=1

P (st = u|s0 = 1; p)U(u; p, λ)

= ψ5(p)′γ(λ) + ψ6(p)

where ψ3 (s; p) , ψ4 (s; p) , ψ5 (p) , ψ6 (p) are implicitly defined through equation (4.1) and

ψ1 (s; p) and ψ2 (s; p).

This leads to an expression for the conditional probabilities of machine replacement:

P [at = 1|st; p, λ] = Φ

(
(ψ5(p)− ψ3(st; p))

′γ(λ) + ψ6(p)− ψ4(st; p)√
2

)
(8)

4.2 Estimation

The econometrician observes n machines that are independently operated. At one given

period t, the sample contains {ai, si}ni=1, where we supress the time subscript t for simplic-

ity. We assume β to be known and are interested in estimating λ using moment condition

(8). In the first stage, we compute p̂(s) by averaging out ai for each value of s.

Let Xj,i(p) denote the j-th element of −ψ3(si; p), j = 1, . . . , 5. Define c(p) ≡ X1,i(p) +

X5,i(p). Given that c(p) and ψ5(p) do not vary with si, we transform the left-hand side

of (8) to:

Φ

 1√
2

ψ5(p)′γ(λ) + c(p)γ1(λ) +
4∑
j=2

Xj,i(p)γj(λ) +X5,i(p)(γ5(λ)− γ1(λ)) + ψ6(p)− ψ4(si; p)


= Φ

(
X̃i(p)

′δ(p, λ) + Zi(p)
)

where X̃i(p) = [1 X2,i(p) . . . X5,i(p)]
′/
√

2, Zi(p) = (ψ6(p)− ψ4(si; p))/
√

2, and δ(p, λ)

the corresponding parameters2.

2This transformation helps circumvent numerical issues when inverting X̃ ′X̃.
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The moment condition g in the second stage is a function of the observed data ai, si,

first stage parameter p, and second stage structural parameters λ.

g(ai, si; p, λ) = X̃i(p)
[
ai − Φ

(
X̃i(p)

′δ(p, λ) + Zi(p)
)]

Using the estimated p̂ from the 1st stage, we want to compute λ̂ = [θ̂1 θ̂3 R̂] by minimizing

gn(p̂, λ)′Wgn(p̂, λ) for some P.D. matrix W, where gn(p, λ) = (1/n)
∑n

i=1 g(ai, si; p, λ).

The fast bootstrap statistic is η̂∗ = −(Γ̂′1W Γ̂1)−1Γ̂′1W
√
n
[
g∗n(p̂∗, λ̂)− gn(p̂, λ̂)

]
, and Γ1 is

estimated by the derivative of gn wrt λ evaluated at (p̂, λ̂).

4.3 Monte Carlo

The structural parameters are set to θ1 = −5, θ3 = 2 and R = 1.3. Fixing β = 0.8, we

numerically solve for the value function V (s) and the vector p. We consider sample sizes

of 100, 400, 800 and 1600. We simulate 400 different samples of the largest size by drawing

si uniformly over {1, . . . ,M} and using the true p to draw actions ai.

For each sample size and simulation, we compute p̂, λ̂ and Γ̂1. Then, we bootstrap

this sample 400 times, and compute p̂∗ and η̂∗. We also compute λ̂∗ to compare the

conventional bootstrap to the fast one.

4.4 Results

The results from the Monte Carlo simulations are reported in tables 1 to 5 below. Table 1

reports the empirical coverage probabilities across simulations of the confidence intervals

for λ0 at three confidence levels, generated according to the fast bootstrap and the con-

ventional bootstrap. The coverage rate produced by the fast bootstrap is somewhat more

conservative than the specified level. On the other hand, the conventional bootstrap has

lower coverage rates for some sample sizes.

Tables 2 to 4 report false coverage comparisons for the 90%-confidence interval pro-

duced by both conventional and fast-bootstrap. In both cases the coverage rate goes to

zero as we move away from the true parameter, although this convergence is slightly slower

for the fast bootstrap.
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Finally, table 5 shows the median time in minutes required to run one simulation of

this Monte Carlo exercise, for each sample size and both resampling methods. We can see

that, even for this simple example, the conventional bootstrap method can be quite time

consuming. The fast-bootstrap was about 3 to 30 times faster depending on the sample

size.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

5 Conclusion

We have proposed a fast resampling method. The method directly exploits estimating

(score) functions computed on each resampled draw and avoids recomputing the estima-

tors for each of them. While this paper focuses on the fast bootstrap method, an earlier

version of the paper also shows the validity of a similar fast subsampling method based on

the score function representation. We have not emphasized the fast subsampling method

because it is not more computationally or inferentially advantageous than fast bootstrap.

Fast resampling is easy to perform, and achieves satisfactory performance while improv-

ing considerably numerical speed. These advantages should be of interest for applied

researchers using nonlinear and dynamic models to conduct effective inference.

Our analysis also suggests that while analytical or numerical variance formulas, resam-

pling and MCMC can each be used to obtain valid asymptotic inference, using them in

combination instead of in isolation can offer more powerful tools for computing standard

errors and constructing confidence intervals and test statistics.

The main advantage of the score function based bootstrap method for two step estima-

tors is to provide a computational feasible inference method for the first order asymptotic
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distribution. It is likely to be less accurate than a studentized bootstrap which either

requires analytic knowledge of the asymptotic variance or is computationally more exten-

sive. In one step parametric models, Andrews (2002) studies the higher order accuracy

properties of a studentized version of the bootstrap method. It is beyond the scope of

this paper, but a potentially important direction of future effort is to extend the results

of Andrews (2002) to two step semiparametric models.
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Table 1: Coverage of Confidence Intervals

Sample Size
Confidence Level 100 400 800 1600

a. Fast Bootstrap
90% 0.9875 0.9725 0.9600 0.9475

θ1 95% 0.9950 1.0000 0.9875 0.9800
99% 0.9975 1.0000 1.0000 0.9975

90% 0.9550 0.9800 0.9675 0.9375
θ3 95% 0.9775 0.9925 0.9850 0.9750

99% 0.9850 1.0000 0.9975 0.9950

90% 0.9600 0.9700 0.9375 0.9325
R 95% 0.9750 0.9750 0.9600 0.9625

99% 0.9975 0.9900 0.9900 0.9825

b. Conventional Bootstrap
90% 0.8875 0.9625 0.9375 0.9050

θ1 95% 0.9225 1.0000 0.9750 0.9475
99% 0.9875 1.0000 0.9975 0.9925

90% 0.8025 0.9500 0.9300 0.8950
θ3 95% 0.8050 0.9850 0.9675 0.9475

99% 0.8075 1.0000 0.9925 0.9850

90% 0.9200 0.9775 0.9425 0.9175
R 95% 0.9375 0.9850 0.9700 0.9625

99% 0.9550 0.9975 0.9925 0.9850
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Table 2: False Coverage for θ1

Sample Size
Parameter Value 100 400 800 1600

a. Fast Bootstrap
-8.0 0.9325 0.2325 0.0050 0.0000
-7.0 0.9500 0.5675 0.0975 0.0075
-6.0 0.9800 0.8825 0.7950 0.2650
-4.0 0.9950 0.9175 0.6075 0.1625
-3.0 1.0000 0.4225 0.0375 0.0000
-2.0 0.9900 0.1275 0.0025 0.0000

b. Conventional Bootstrap
-8.0 0.8175 0.0750 0.0000 0.0000
-7.0 0.8475 0.3575 0.0500 0.0025
-6.0 0.8650 0.8275 0.5425 0.1550
-4.0 0.9000 0.8350 0.4275 0.1425
-3.0 0.8975 0.3225 0.0275 0.0000
-2.0 0.8225 0.0575 0.0025 0.0000

Probability that 90%-confidence interval built in table 1
contains alternative parameter values. True θ1=-5.0.
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Table 3: False Coverage for θ3

Sample Size
Parameter Value 100 400 800 1600

a. Fast Bootstrap
0.0 0.4625 0.0000 0.0000 0.0000
1.0 0.9800 0.0400 0.0000 0.0000
1.5 0.9850 0.5875 0.0950 0.0125
2.5 0.9275 0.6575 0.2000 0.0350
3.0 0.8625 0.1550 0.0000 0.0000
4.0 0.6325 0.0150 0.0000 0.0000

b. Conventional Bootstrap
0.0 0.2425 0.0000 0.0000 0.0000
1.0 0.7425 0.0100 0.0000 0.0000
1.5 0.8625 0.4125 0.0725 0.0025
2.5 0.6950 0.4775 0.0825 0.0125
3.0 0.5525 0.0425 0.0000 0.0000
4.0 0.2300 0.0000 0.0000 0.0000

Probability that 90%-confidence interval built in table 1
contains alternative parameter values. True θ3=2.0.
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Table 4: False Coverage for R

Sample Size
Parameter Value 100 400 800 1600

a. Fast Bootstrap
0.7 0.9100 0.0400 0.0000 0.0000
1.0 0.9900 0.6550 0.0950 0.0025
1.2 0.9825 0.9600 0.9000 0.7275
1.4 0.9425 0.8875 0.8425 0.7150
1.6 0.8600 0.4200 0.1175 0.0125
1.9 0.6900 0.0775 0.0000 0.0000

b. Conventional Bootstrap
0.7 0.9650 0.0250 0.0000 0.0000
1.0 0.9475 0.6100 0.0675 0.0025
1.2 0.9325 0.9800 0.8600 0.6125
1.4 0.9075 0.8925 0.8275 0.6600
1.6 0.8250 0.4100 0.1075 0.0100
1.9 0.6475 0.0575 0.0000 0.0000

Probability that 90%-confidence interval built in table 1
contains alternative parameter values. True R=1.3.
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Table 5: Median computation time per simulation in minutes

Sample Size
Bootstrap Method 100 400 800 1600

Fast 0.7163 2.7759 5.5835 10.3878
Conventional 21.2070 21.8642 30.8541 37.5082

The simulations were performed in MATLAB(R) using
a Unix server running 8 parallel processes with 8-core CPUs
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