Supplemental Information

1 Taking into account the compositional nature of the dependent variable, and the Marginal Vote Differential

Table 3 in the main text presents four separate OLS regressions to estimate the effect of assignment to early versus late treatment on turnout and the partisan distribution of the vote. OLS, however, assumes that the share of the vote going to each party is unbounded, and treats the vote of each party independently (Tomz, Tucker, and Wittenberg 2002). Table SI.1 presents three robustness checks that relax these assumptions.

The first column presents the estimates from a seemingly unrelated regressions system (SUR) in which each equation in the system has its own vector of estimates, however, SUR allows for cross equation correlation of the errors (Wooldridge 2002). The dependent variables in each equation of the system are the share of the votes for each party (including the share of the three largest parties, and the share of “other” smaller parties), as well as the share of No turnout in the precinct (calculated as 1-Turnout). As in the main text, all dependent variables are calculated with respect to the voting age population. Column 1 shows that the effect of assignment to early versus late treatment is robust to taking into account that the errors across equations are correlated. Early assignment still increases turnout by almost six percentage points (statistically significant at the 10 percent level in a two sided test), and increases the incumbent vote share by about four percentage points (statistically significant at the five percent level in a two sided test).

Column 2 in Table SI.2 presents the results of an OLS regression where the dependent variable is the Marginal Vote Differential (MVD), calculated following Arceneaux
as \(\frac{Y-N}{R} \), where \(Y \) is the votes for the incumbent, \(N \) is the votes for the opposition, and \(R \) is the total number of voting age population. This statistic captures CCT’s potential mobilizing effect among incumbent and opposition supporters. Early assignment to treatment leads to a three percentage point increase in the MVD, significant at the ten percent level. This estimate is consistent with the coefficients in column 1 (.04 – (.004 + .002 + .006)).

Besides the compositional nature of the dependent variables, the additional assumption that OLS makes is that the party vote shares are unbounded. To relax this assumption, I follow Tomz, Tucker and Wittenberg’s (2002) model for multiparty electoral data, which transforms the dependent variables into the natural log of each party’s share of the vote, relative to that of a party of reference, and estimates the coefficients via SUR.

In my sample, about ninety percent of the precincts are fully contested, and the rest are partially contested. A precinct where a party gets no votes is set as missing when the dependent variable is transformed into the natural log. As in Tomz, Tucker and Wittenberg (2002), I deal with the different patterns of contestation by running a separate analysis for fully contested precincts. This analysis imposes additional demands on the data since it entails estimating the heterogenous effects of assignment to early treatment by patterns of contestation (the precincts with partial contestation, however, are too few to allow a meaningful estimation).

Column 3 of Table SI.2 shows the estimates from Tomz, Tucker, and Wittenberg statistical routine incorporated in Clarify. The coefficients are the changes in expected values of the dependent variables caused by increasing early assignment from zero to one. The estimates are consistent with the main results of the paper. Among fully contested precincts, and after taking into account that the cross equation errors are correlated, assignment to early treatment continues to increase turnout by five percentage points, and incumbent vote share by four percentage points. The estimates are less precisely estimated when restricting the sample to only fully contested precincts, but the effect remains statistically significant in a one-sided test, at the 5 % level.
SI.1: Additional Robustness checks

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>All Precincts</th>
<th>Only Fully Contested Precincts</th>
<th>SUR+Tomz et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No turnout</td>
<td>-0.058*</td>
<td>-.049†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(.028)</td>
<td></td>
</tr>
<tr>
<td>PRI</td>
<td>0.042**</td>
<td>.037†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(.020)</td>
<td></td>
</tr>
<tr>
<td>PAN</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRD</td>
<td>0.002</td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(.012)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.006</td>
<td>.006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(.005)</td>
<td></td>
</tr>
<tr>
<td>MVD</td>
<td></td>
<td>.028*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.013)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>420</td>
<td>420</td>
<td>392</td>
</tr>
</tbody>
</table>

Note: *** p<0.01, ** p<0.05, * p<0.1 two-sided test. † p<0.05 one-sided test.

2 Main estimates without controls

The following table presents the main results without controls. Because treatment is orthogonal to baseline characteristics, excluding controls has a minimal effect on the estimates.
ITT Estimates of the Assignment to Early versus Late Treatment

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnout</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>0.054*</td>
<td>0.041**</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.017)</td>
<td>(0.013)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.629***</td>
<td>0.341***</td>
<td>0.127***</td>
<td>0.131***</td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.012)</td>
<td>(0.009)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Observations</td>
<td>420</td>
<td>420</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>R-squared</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Villages Fixed effects</th>
<th>yes</th>
<th>yes</th>
<th>yes</th>
<th>yes</th>
</tr>
</thead>
</table>

IV Estimates of Early Progresa Coverage

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnout</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Progresa</td>
<td>0.161*</td>
<td>0.122**</td>
<td>0.011</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(0.091)</td>
<td>(0.050)</td>
<td>(0.039)</td>
<td>(0.048)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.614***</td>
<td>0.434***</td>
<td>0.069**</td>
<td>0.092***</td>
</tr>
<tr>
<td></td>
<td>(0.068)</td>
<td>(0.044)</td>
<td>(0.030)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Observations</td>
<td>420</td>
<td>420</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>R-squared</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This table presents the Intent-to-Treat estimates of early versus late assignment to treatment in the upper panel. The lower panel presents the IV estimates of early Progresa coverage, where the instrument is the random assignment. All columns include number of villages fixed effects. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

3 Estimates among precincts with two experimental villages

The following table presents the results when using the ten percent of the sample where precincts included two random villages. Assignment to early treatment and early Progresa coverage have similar effects among the precincts with two randomized villages, but the magnitude of the estimates are slightly smaller and are less precisely estimated due to the small number of observations in this group. The small sample size is also likely to explain the divergence between the ITT and IV estimates.
ITT Estimates of the Assignment to Early versus Late Treatment

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnout</td>
<td>0.02</td>
<td>0.015</td>
<td>0.037</td>
<td>0.017</td>
<td>-0.0005</td>
<td>0.022</td>
<td>0.0009</td>
<td>-0.015</td>
</tr>
<tr>
<td>PRI</td>
<td>(0.036)</td>
<td>(0.034)</td>
<td>(0.042)</td>
<td>(0.038)</td>
<td>(0.038)</td>
<td>(0.040)</td>
<td>(0.027)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>PAN</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>PRD</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Constant</td>
<td>0.635***</td>
<td>0.458</td>
<td>0.336***</td>
<td>0.573</td>
<td>0.178***</td>
<td>0.009</td>
<td>0.092***</td>
<td>0.271</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.364)</td>
<td>(0.029)</td>
<td>(0.398)</td>
<td>(0.031)</td>
<td>(0.200)</td>
<td>(0.023)</td>
<td>(0.189)</td>
</tr>
<tr>
<td>Observations</td>
<td>40</td>
<td>38</td>
<td>40</td>
<td>38</td>
<td>40</td>
<td>38</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.074</td>
<td>0.457</td>
<td>0.186</td>
<td>0.513</td>
<td>0.147</td>
<td>0.377</td>
<td>0.140</td>
<td>0.417</td>
</tr>
</tbody>
</table>

IV Estimates of Early Progresa Coverage

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnout</td>
<td>0.072</td>
<td>0.052</td>
<td>0.164</td>
<td>0.053</td>
<td>-0.014</td>
<td>0.075</td>
<td>0.013</td>
<td>-0.048</td>
</tr>
<tr>
<td>PRI</td>
<td>(0.154)</td>
<td>(0.101)</td>
<td>(0.184)</td>
<td>(0.115)</td>
<td>(0.174)</td>
<td>(0.116)</td>
<td>(0.126)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>PAN</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>PRD</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Constant</td>
<td>0.562***</td>
<td>0.447</td>
<td>0.377***</td>
<td>0.668*</td>
<td>0.081</td>
<td>0.066</td>
<td>0.026</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>(0.116)</td>
<td>(0.319)</td>
<td>(0.128)</td>
<td>(0.349)</td>
<td>(0.125)</td>
<td>(0.226)</td>
<td>(0.084)</td>
<td>(0.168)</td>
</tr>
<tr>
<td>Observations</td>
<td>39</td>
<td>37</td>
<td>39</td>
<td>37</td>
<td>39</td>
<td>37</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.100</td>
<td>0.436</td>
<td>0.170</td>
<td>0.492</td>
<td>0.140</td>
<td>0.393</td>
<td>0.110</td>
<td>0.455</td>
</tr>
</tbody>
</table>

Notes: The upper panel in this table presents the estimates of assignment to early versus late treatment for the 40 precincts with two experimental villages. The lower panel presents the IV estimates of early Progresa coverage, the instrument is the random assignment. Robust standard errors in parentheses. All columns include number of villages fixed effects. Columns 2, 4, 6 and 8 include the following controls: poverty in 1995, population 1995, total votes 1994, votes for the PRI, PAN and PRD in 1994. *** p<0.01, ** p<0.05, * p<0.1.